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A SUPPLEMENTARY MATERIAL

This appendix contains results referred to throughout: in particular, the full derivation of β backward recursions
(general and reset-system case), the marginal inference derivations in respect of the switch-reset LDS, and the full
bracket smoother recursions. Finally, we give two further examples of the models in practice.

A.1 β Smoother Update Rules: Full Derivation

In this section, we first derive the update rules for the β backward recursion.

Standard canonical form smoothing in respect of visible variables y, used for the updates in β messages, can be
derived as follows.

β(ht) = p(yt+1:T |ht)

=

∫
ht+1

p(yt+1|ht+1,��ht,���yt+2:T )p(ht+1, yt+2:T |ht)

=

∫
ht+1

p(yt+1|ht+1) p(yt+2:T |ht+1,��ht)︸ ︷︷ ︸
=β(ht+1)

p(ht+1|ht)

In the case of a linear dynamical system, we assume squared-exponential messages in canonical form, given by
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Set M = B>R−1B + Q−1 + Gt+1 and b = B>R−1 (yt+1 − ȳ) + Q−1h̄ + gt+1. Then
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Since M is symmetric,
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where M = B>R−1B + Q−1 + Gt+1 and b = B>R−1 (yt+1 − ȳ) + Q−1h̄ + gt+1.

Now in the reset LDS case,
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we use p(ht, ct|y1:t) ∝ α(ht, ct) and p(yt+1:T |ht, ct) = β(ht, ct). We have
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We can calculate β0 using the canonical update rule given above. For each component from the previous iteration,
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As before, set M = B>R−1B + Q−1 + Gt+1 and b = B>R−1 (yt+1 − ȳ) + Q−1h̄ + gt+1. Then
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Now to combine the forward and backward messages8
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Set M′ = F−1i + Gj . Then the posterior component is given by
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A.2 Switch-Reset Models: Inference

Marginal inference is straightforward based on extending the variable ht → (ht, st) and using the recursions in
section(2). Briefly, we first define the equivalent run-length model, with transition p(ρt|st, st−1, ρt−1). Then the
filtered posterior is p(ht, st, ρt, y1:t) = α̃(ht|st, ρt)α̃(st, ρt). The discrete component updates according to

α̃(st, ρt) = p(yt|st, ρt)
∑

st−1,ρt−1

p(ρt|st, st−1, ρt−1)p(st|st−1, ρt−1)α̃(st−1, ρt−1)

where we note ρt 6= 0 ⇒ (ρt−1 = ρt − 1) ∧ (st−1 = st). This shows that discrete filtered distribution scales as
O
(
S2T 2

)
. The continuous component is calculated using standard forward propagation, conditioned on ρ1:t, s1:t.

For smoothing, we may apply either the α̃− γ̃ approach, or use bracketing. For bracketing, in the no-reset case,

p(st, ρt, ςt|y1:T ) = p(st+1 = st, ρt+1 = ρt + 1, ςt+1 = ςt − 1|y1:T )

and for the reset case ςt = 1⇔ st+1 6= st ⇔ ρt+1 = 0, so p(st, ρt, ςt = 1|y1:T ) is given by
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∑
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with (for st+1 6= st)

p(st+1, ρt+1 = 0|y1:t) =
∑

st 6=st+1,ρt

p(st+1|st, ρt)p(st, ρt|y1:t)

This gives an overall O
(
S2T 3

)
complexity for smoothing. The continuous component of the smoothed posterior

p(ht|st, ρt, ςt, y1:T ) is calculated by standard smoothing on the bracket.

8For brevity, we here use CAN (g,G) to refer to a squared exponential component of the form exp− 1
2
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t Ght − 2h>
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.



A.3 LDS Algorithms

We give the full algorithms for the LDS bracket smoother, along with Kalman filter and correction smoother
update routines from Barber (2011). Note that, for the general model, LDSForward and LDSBackward can
be replaced with any update routine calculating sufficient statistics and corresponding likelihood.

Algorithm 1 RLDS Filtering for a model with parameters θ0 (no reset) and θ1 (reset).

1: {f1(ρ = 0),F1(ρ = 0), p1} ← LDSForward(0,0,y1; θ1) . Initial reset case
2: w1(ρ = 0)← p1 × p(c1 = 1)
3: {f1(ρ = 1),F1(ρ = 1), p1} ← LDSForward(0,0,y1; θ0) . Initial non-reset case
4: w1(ρ = 1)← p1 × p(c1 = 0)
5: l1 ←

∑
w1, w1 ← w1/

∑
w1 . Likelihood, Normalise

6: for t← 2, T do
7: {ft(ρ = 0),Ft(ρ = 0), pt} ← LDSForward(0,0,yt; θ

1) . Reset case

8: wt(ρ = 0)← pt ×
[
p(ct+1 = 1|ct = 1)wt−1(ρt−1 = 0) + p(ct+1 = 1|ct = 0)

∑t−1
ρt−1=1

wt−1(ρt−1)
]

9: for ρ← 1, t do
10: {ft(ρ),Ft(ρ), pt} ← LDSForward(ft−1(ρ− 1),Ft−1(ρ− 1),yt; θ

0) . Non-reset cases
11: wt(ρ)← pt × p(ct+1 = 0|ct = I(ρ = 1))wt−1(ρt−1 = ρ− 1)
12: end for
13: lt ← lt−1 ×

∑
wt, wt ← wt/

∑
wt . Likelihood, Normalise

14: end for

Algorithm 2 LDS standard Kalman filter, with parameters θ.

1: function LDSForward(f , F, y; θ)
2: µh ← Af + h̄, µy ← Bµh + ȳ . Mean of p(ht,yt|y1:t−1)

3: Σhh ← AFA> + Q, Σyy ← BΣhhB> + R , Σyh ← BΣhh . Covariance of p(ht,yt|y1:t−1)
4: f ′ ← µh + Σ>yhΣ−1yy (y − µy), F′ ← Σhh −Σ>yhΣ−1yyΣyh . Find p(ht|y1:t) by conditioning

5: p′ ← exp(− 1
2 (y − µy)>Σ−1yy (y − µy))/

√
det (2πΣyy) . Compute likelihood

6: return f ′, F′, p′

7: end function

Algorithm 3 RLDS Bracket Correction Smoothing, with parameters θ0 (no reset) and θ1 (reset).

1: xT ← wT , gT ← fT , GT ← FT . Initialise to filtered posterior
2: for t← T − 1, 1 do
3: xt(0 : t, 2 : T − t+ 1)← xt+1(1 : t+ 1, 1 : T − t) . Non-reset cases
4: for ρ← 0, t do
5: xt(ρ, 1)← p(ct+1 = 1|ct = I(ρ = 0))× wt+1(ρ) . Reset cases
6: end for
7: xt(:, 1)← xt(:, 1)×∑xt+1(0, :)/

∑
xt(:, 1) . Normalise

8: gt(:, 1)← ft, Gt(:, 1)← Ft . Copy filtered moments
9: for ρ← 0, t; ς ← 2, T − t+ 1 do . Calculate moments

10: {gt(ρ, ς),Gt(ρ, ς)} ← LDSBackward(gt+1(ρ+ 1, ς − 1),Gt+1(ρ+ 1, ς − 1), ft(ρ),Ft(ρ); θ0)
11: end for
12: end for

Algorithm 4 LDS standard RTS correction update, with parameters θ.

1: function LDSBackward(g, G, f , F; θ)
2: µh ← Af + h̄, Σh′h′ ← AFA> + Q, Σh′h ← AF . Statistics of p(ht,ht+1|y1:t)

3:
←−
Σ ← F−Σ>h′hΣ−1h′h′Σh′h,

←−
A ← Σ>h′hΣ−1h′h′ ,

←−m← f −←−Aµh . Dynamics reversal p(ht|ht+1,y1:t)

4: g′ ←←−Ag +←−m, G′ ←←−AG
←−
A> +

←−
Σ . Backward propagation

5: return g′, G′

6: end function



Switch-Reset Models : Exact and Approximate Inference

A.4 Piecewise-Constant Model: Well-Log Example

A piecewise reset model as described in section(5), widely known as a change-point model, is implemented by
specifying the reset-case latent prior p1(ht), emission p(yt|ht, ct), and deriving the forward updates by appealing
to equation (5.1) in the no-reset case and equation (2.4) in the reset case.

Change-point models have been widely applied to the well-log data of Ó Ruanaidh and Fitzgerald (1996)9,
in the form of a noisy step function. Adams and MacKay (2007) used a Gaussian prior distribution over the
piecewise-constant mean of the Gaussian-distributed data for filtered inference. We implemented such model
in our smoothing approximation framework (ht = µt, p

0(µt|µt−1) = δ(µt − µt−1)), using the same parameters:
p1(µt) = N

(
µt 1.15× 105, 108

)
and change-point probability p(ct = 1) = 1

250 . Results are shown in fig(6).
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Figure 6: Window of the 4050-datum well-log data set, as shown by Adams and MacKay (2007). We show (i) the
observed data overlaid with the filtered mean and a posteriori observation standard deviation; (ii) the smoothed
equivalent. This example was run with N = 10 components comprising each approximate message.

A.5 Switch-Reset LDS: Generated Example

We give a generated example of the switch-reset LDS, as an experiment for which the truth of the state mass is
known. The results are shown in fig(7), in which we observe that the approximate posterior tends to the exact
posterior as the number of components increases. As we see, good results can be obtained based on using a
very limited number of message components (10) compared to the number required to perform exact smoothing
(10, 100). Intuitively, the reason is that in the exact case, information is kept for filtering and smoothing time t
from the whole sequence before and after t.
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Figure 7: Switch-Reset LDS example. We generated a single-dimensional timeseries, with S = 5 states, T = 200,
and two-dimensional latent dynamics using random parameters. From top to bottom, we show (i) the generated
signal; (ii) the generated state mass; (iii)-(v) the mass of the approximate smoothed posterior of each state using
1, 2 and 10 components; and (vi) the exact case, which contains a maximum of 10, 100 components.

9Obtained from Fearnhead and Clifford (2003).


