A Spike and Slab Restricted Boltzmann Machine

Aaron Courville, James Bergstra, Yoshua Bengio; JMLR W&CP 15:233-241, 2011.

Abstract

We introduce the spike and slab Restricted Boltzmann Machine, characterized by having both a real-valued vector, the slab, and a binary variable, the spike, associated with each unit in the hidden layer. The model possesses some practical properties such as being amenable to Block Gibbs sampling as well as being capable of generating similar latent representations of the data to the recently introduced mean and covariance Restricted Boltzmann Machine. We illustrate how the spike and slab Restricted Boltzmann Machine achieves competitive performance on the CIFAR-10 object recognition task.

[pdf]



Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed