Estimating beta-mixing coefficients

Daniel McDonald, Cosma Shalizi, Mark Schervish; JMLR W&CP 15:516-524, 2011.

Abstract

The literature on statistical learning for time series assumes the asymptotic independence or ""mixing"" of the data-generating process. These mixing assumptions are never tested, nor are there methods for estimating mixing rates from data. We give an estimator for the beta-mixing rate based on a single stationary sample path and show it is L1-risk consistent.

[pdf]



Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed