
Erik P. Zawadzki, Geoffrey J. Gordon, André Platzer

Proof of lifting (Lemma 1): Let V := value(F[).
We claim that value(F) = V if there are no novel
discordant atoms. To prove this suppose the nega-
tion: there are no novel discordant atoms yet the
value of F in every model M is <V. We define an
partial valuation I that assigns to each ground in-
stance of active atoms the value of their MSG in M[.
E.g. we are considering ground atom P , it takes value
I(P ) = value(Q[,M[) where the Q = msg(P,A(F)).
The partial valuation can be turned into a total valua-
tion by arbitrarily assigning values to the other atoms.

The value of F decreases only if an atom in the cover-
ing set S changes. If values of atoms in the covering set
are fixed, then changing the value of a non-active atom
can only increase the value of ∨-clauses—the values of
the Σ-clauses in the covering set are preserved and so
are a lower-bound for the ∨-clause. Hence we can only
increase the value of the main ∧-clause. Therefore the
partial interpretation that assigns values to all active
atoms lower-bounds the formula’s value for all total
valuations that extend I.

Since in every model value(F,M) < V, so there is at
least one instance of a ∨-clause C< in every model such
that all its Σ-clauses—including the clause Σ< in the
covering set—are less than V when instantiated. In
particular let C< be the minimal clause (in �-order)
in an arbitrary model that has such an instance and
let the appropriate instantiator be θ (Def. 2).

If value(Σ<θ) ≤ value(C<θ) < V then at least one
active atom P ∈ Σ< ∈ C< must have a differ-
ent value than P[ when instantiated: value(Pθ, I) 6=
value(P[,M[). Since Pθ takes on a different value,
there must another way of generating it—there must
be some Σ-clause ΣG ∈ CG in the covering set that
generates ground instance Pθ. So there must be an
atom Q ∈ ΣG such that Qσ = Pθ for some σ (it may
be helpful to refer to Figure 1 for clarification). P
must be greater than Q in the �-ordering since Pθ is
generated from Q and not P . The ordering must addi-
tionally be strict since if P and Q were mere renamings
they would have the same value in M[.
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Figure 1: A diagram summarizing the structure of I
for Q and P . Edges indicate substitution.

C< and CG are potential clauses to apply SIG to with
witness ρ = mgu(P,Q). Such a most general unifier
exists since they have a common instance and can be
standardized apart. Since F has no new discordant
atoms then both conclusions must already be in F .
Since P is strictly greater than Q it must be the case
that ρ is not renaming for P . Therefore P � Pρ and

C< � C<ρ.

If there exists a ground instance of C<ρ such that all
Σ-clauses are less in I than V then this contradicts the
minimality (in terms of �) of C< as a counterexample.
Therefore, every ground instance of C<ρ has value no
less than V. In particular, this implies that the value
of C<θ is no less than V which contradicts our sup-
position that C<θ was a counterexample for the lifted
value of F being bounded from below by V. Therefore,
V is a lower bound of F.

Proof of subproblem discord locality (Lemma
2): Suppose that the value(F[) ≥ 0. For any set of
any ground instances like S, any model that general-
izes it must have no less value. The MSG S′ is such
a set, therefore value(S′) ≤ value(S). By our suppo-
sition and Proposition 2 value(S) < 0 ≤ value(F[) ≤
value(S′[), so it must be the case that the ground in-
stance S′[ lacks some of the constraints on the values
that are present in the ground instance S′σ = S. Here
σ is the substitution that explains why S′ is a gener-
alization of S.

Since value(S′σ) < value(S′[) there must be addi-
tional constraints in S′σ that are not present in S′[.
Since they differ only by how they were instantiated
this means that there are atoms P and Q that are
distinct in S′[, yet are unified—and therefore con-
strained to take on the same value—in S′σ. Therefore
value(P[) 6= value(Q[) yet Pσ = Qσ so they satisfy
our definition of a discordant atomic pair and can gen-
erate an instance.

If no such instance is novel, then by Lemma 1 S′[ is an
lower-bound on the value of S′—this contradicts our
supposition that value(S) < value(S′[). Therefore,
there has to be at least one new instance generated by
clauses CP and CQ with some witness θ.

Both conclusions are in S′′, the MSG of S in F′ =
F ∧ CP θ ∧ CQθ. By construction P and Q are uni-
fied in S and by definition of SIG the witness θ is the
most general unifier of P and Q. Therefore CP θ is a
generalization of CPσ ∈ S (similarly for CQ). They
are more specific than elements of the old set S′ by
Proposition 3 and therefore are members of the new
MSG of S and thus SIG is applicable.

Proof of finiteness (Lemma 3): In order to prove
that the Si—the sequence of MSGs—eventually ter-
minate we show they descend along a partial ordering.
We then show that there are only finitely many sets
that could be Si, and that cycling is impossible. This
proves that the sequence must have finite length.

Define a partial ordering �S over generalizations Si in
the following way: S′ �S S′′ if for all C in the original
subproblem S, C ′ � C ′′, where C ′ = msg(C, S′) and
C ′′ = msg(C, S′′). Also, at least one of these must be
strict: there must exist a C such that C ′ � C ′′.
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When we apply SIG to Si (and we always can as long
as value(Si[) ≥ 0) then both conclusions are members
of Si+1 by Lemma 2. By Proposition 3 at least one
of these conclusions is strictly smaller in �-order than
its premise so Si �S Si+1.

S is a finite subproblem—say that it has N elements—
therefore each Si must have at most N elements since
each element C ∈ Si uniquely generalizes an element
of S (if this is not true then C is redundant and can
be discarded from Si). Additionally, since S is finite
it must have a finite parse-tree depth (e.g. the depth
of P (x) is one, the depth of P (f(x)) is two). Let this
depth be d. Let n be the maximum arity of all func-
tions and predicates.

There is only a finite number of sets that could gener-
alize S. Since instantiation can never decrease the size
of a formula (in terms of the parse-tree), only formulas
that are no larger than the largest ∨-clause in S could
be a member of any Si. There is a finite number of
formula with maximum depth d with maximum arity
n, and each Si is set of at most N of these formula, so
there is a finite number of sets that could be Si.

Therefore the Si either terminate or cycle. If they cycle
then we must have an element such that Sj �S Sj ,
which is a contradiction. Therefore, the sequence of Si
is finite and terminates in either S or some non-ground
generalization of S that exhibits negative value.

Extended planning example: Consider the follow-
ing planning problem: a vehicle with a bad battery
is trying to get to the top of a hill. It is trying to
reach this particular goal in a fixed amount of time
(eight time-steps), but due to its battery it deceler-
ates as it moves. Because of noisy sensor information,
we do not know the exact structure of the hill. We
do know that most terrain takes between two to three
time-steps for the vehicle to traverse. We also have
better information about the start and goal: the start
takes less time-steps to get out of (the bottom of the
hill is flat) and the goal takes more time-steps to enter
(the top of the hill is unusually craggy).

Due to its failing battery the vehicle is slowing down:
each subsequent edge on the path takes an additional
time-step. So if a particular edge E takes between two
and three time-steps with a fresh battery, after visiting
a previous locations E it takes between three and four.

There are two features of this problem that make it
interesting. Firstly, since the graph contains an un-
known number of nodes it is truly a first-order prob-
lem. We cannot pass the description of this problem
to a proposition solver and need some way—like our
solver—of instantiating the unnamed objects.

Secondly, this problem would be longer to express in
FOL (without LIA theory) since the idea of ‘length’ or

‘time’ requires linear integer arithmetic which is eas-
ily captured in FOP formula that follows. FOL would
require a verbose ‘one-of-k’ representation—or addi-
tional axioms for arithmetic—which is less concise.

We can model this situation as follows (omitting some
details). First, we define a path:

Start(j)− 1 ∨ Path(i, j) (11)

− Path(i, p(j))− Edge(p(j), j)− Decl(p(j))

Start(j)− 1 ∨ Path(i, p(j)) (12)

+ Edge(p(j), j) + Decl(p(j))− Path(i, j)
These clauses insist that either a location is the start,
or there is a previous location (denoted by the Skolem
function p(i)) that explains how it got there with.
This lets us break down the total time into some prior
path time Path(i, p(j)) plus the base time of the edge
Edge(p(j), j) plus the deceleration penalty Decl(p(j)).
Line 11 and 12 bound on Path(i, j) from above and
below, and together they enforce equality. The decel-
eration penalty grows with the p(i) function.

We describe the edge structure of this graph of un-
known size as follows (see Figure 2 for a diagram). All
edges out of a take between one or two time-steps. All
edges into b require three or four steps. General edges,
between neither a nor b take two or three time-steps.
All other edges take at least twelve time-steps, which
is too costly to be useful (since our plan must be eight
time-steps long in total).
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Figure 2: An description of a graph of unknown size.
Ce represents the cost of the edge that it is decorating.
For example, the constraint on general edges can be
expressed as:
−A(i)− A(j)− B(i)− B(j) ∨ Link(i, j)− 2 (13)

−A(i)− A(j)− B(i)− B(j) ∨ 3− Link(i, j). (14)
These constraints say that either one of the endpoints
conincides with the start or end, or the link cost must
be greater than two or less than three. The predicate
A(i) represents whether alocation conincides with the
fixed start a. B(i) is similarly defined for the goal b

Finally, we add the negation of the statement that
asserts that the vehicle can go from the start a to the
finish b in exactly eight time-steps:

Path(a,b)− 8 (15)

8− Path(a,b) (16)
This is impossible: with one previous p(b), the longest
path is 7 (take 2 to get out of a, take 4 + 1 to get
into b after decelerating by 1). With two previous
locations the shortest path is 9 (1 out of a, 2 + 1 be-
tween p(p(b)) and p(b), and 3 + 2 into b). Our proof
procedure proves the infeasiblity of this formula after
adding 76 refutations.


