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Abstract

This paper presents a new experimental framework for studying multi-label evolving
stream classification, with efficient methods that combine the best practices in streaming
scenarios with the best practices in multi-label classification. Many real world problems
involve data which can be considered as multi-label data streams. Efficient methods exist
for multi-label classification in non streaming scenarios. However, learning in evolving
streaming scenarios is more challenging, as the learners must be able to adapt to change
using limited time and memory. We present a new experimental software that extends
the MOA framework. Massive Online Analysis (MOA) is a software environment for
implementing algorithms and running experiments for online learning from evolving data
streams. It is released under the GNU GPL license.

1. Introduction

Nowadays, data is generated at an increasing rate from sensor applications, measurements in
network monitoring and traffic management, log records or click-streams in web exploration,
manufacturing processes, call-detail records, email, blogs, RSS feeds, social networks, and
other sources. Real-time analysis of these data streams is becoming a key area of data
mining research as the number of applications demanding such processing increases.

Data streams pose several challenges for data mining algorithm design. First, they must
make use of limited resources (time and memory). Second, they must deal with data whose
nature or distribution changes over time.

We present a software system specifically designed for the task of streaming multi-label
classification; the generalisation of the traditional multi-class (single-label) task. In multi-
label classification, instead of a single class-label, each example can be associated with
multiple labels. Multi-label classification has seen considerable development in recent years,
but so far most of this work has been carried out in the static context of batch learning
where train-then-test scenarios or cross-fold validation evaluations are typical. Despite the
fact that most of the example data stream applications above can be applied to multi-label
contexts, very few authors have looked explicitly at the task in a data stream context. It
is a new context, and a software framework for multi-label streaming was needed to have
benchmarks to compare to.
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2. A Framework For Multi-label Data Stream Mining

We use the following notation. X = RM is the input attribute space. x ∈ X is an instance,
which can be represented as an M -vector x = [x1, . . . , xM ]. L = {1, . . . , L} is a set of L
possible labels. A label set, i.e. label relevances for a particular instance, is represented by
an L-vector y = [y1, . . . , yL] = {0, 1}L where yj = 1 iff the jth label is relevant (otherwise
yj = 0).

∑
y indicates the number of positive label relevances indicated in y. (xi,yi) is the

ith example in a theoretically infinite stream of instances where yij is the binary relevance

of the jth label with respect to the ith instance, and xia is the value of the ath attribute
of the ith instance. In the data stream prequential evaluation setting (Gama et al., 2009)
a classifier h makes a prediction ŷi = h(xi), which is evaluated against yi, then (xi,yi)
becomes a new training example.

Typically, a classifier in a real-world incremental context interleaves classification and
training, where new examples are classified (i.e. labelled) automatically as they become
available, and can be used for training as soon as their label assignments are confirmed or
corrected. It may be a human or community of humans doing the checking, or checking
might be automatic: For example, a robot learns multiple actions to complete a task, and
each time it attempts the task, it can auto-evaluate its success.

A complete framework for mining multi-label instances from evolving data streams must
have the following components:

• Generators of evolving multi-label streams

• Multi-label adaptive classifiers

• An incremental streaming evaluation component

Despite the ubiquitous presence of multi-label data streams in the real world, assimilating
and storing them on a large scale with both labels and time-order intact has so far proved
largely impractical. Furthermore, in-depth domain knowledge may be necessary to deter-
mine and pinpoint changes to the concepts represented by the data, making drift-analysis
difficult. This fact provides strong motivation for generating synthetic data.

2.1. Evaluation Methodology

Unlike in single-label evaluation, a simple example-accuracy metric does not suffice to give
a clear picture of performance, due to the extra dimension of the label space. Treating
label combinations as examples is too harsh, since combinations must match exactly to be
correct; whereas treating individual labels as examples can be overly lenient and ignores the
importance of label combinations. Other measures of predictive performance are needed.

We use accuracy as defined in (Tsoumakas and Katakis, 2007), for a window of N in-
stances, as:

Accuracy =
1

N

N∑
i=1

∑L
j=1 y

i
j ∧ ŷij∑L

j=1 y
i
j ∨ ŷij

As argued in (Read et al., 2009a), it is essential to include several evaluation measures
in any multi-label experiment. Given the extra label dimension, it is otherwise possible to
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optimise for certain evaluation measures. Thus, we include two other, contrasting, measures;
F1 macro averaged by label, and log-loss.

The F-measure is the harmonic mean between precision and recall, common to informa-
tion retrieval. It can be calculated from the true positives, true negatives, false positives,
and false negatives of predictions y as compared to actual values y. While accuracy is
averaged over examples, this F-measure is averaged over labels:

F-measure×L =
1

L

L∑
j=1

F1({ŷ1j , . . . , ŷNj })

Finally, we use log loss, introduced in (Read et al., 2009a), distinct from other measures
because it punishes prediction confidences rather than 0/1 relevances, and worse errors
are punished exponentially more harshly. Log loss thus provides a good contrast to other
measures. If wj ∈ R is the prediction confidence for the jth label, then:

LLoss =
1

NL

N∑
i=1

L∑
j=1

min(−lloss(ŵi
j , y

i
j), ln(N))

where lloss(ŵ, y) = ln(ŵ)y + ln(1− ŵ)(1− y)
We have used a dataset-dependent maximum of ln(N) to limit the magnitudes of the

penalty, where N is the size of the evaluation window. Such a limit, as explained in
(Schapire and Singer, 1999), serves to smooth the values and to prevent a small subset
of poorly predicted labels from greatly distorting the overall error. Note that, as a loss
metric, the best possible score for log loss is 0.0.

In data stream mining, the most frequently used measure for evaluating predictive accu-
racy of a classifier is prequential accuracy. Gama et al. (Gama et al., 2009) propose to use
a forgetting mechanism for estimating holdout accuracy using prequential accuracy: either
a sliding window of size w with the most recent observations can be used, or fading factors
that weigh observations using a decay factor α. The output of the two mechanisms is very
similar, as every window of size w0 can be approximated by some decay factor α0.

3. Generating Synthetic Multi-label Data

Despite the ubiquitous presence of multi-label data streams in the real world, assimilating
and storing them on a large scale with both labels and time-order intact has so far proved
largely impractical. Furthermore, in-depth domain knowledge may be necessary to deter-
mine and pinpoint changes to the concepts represented by the data, making drift-analysis
difficult. This fact provides strong motivation for generating synthetic data.

There are several existing methods for generating synthetic multi-label data, for example
(Park and Fürnkranz, 2008; Qu et al., 2009), but most are task-specific and not sufficient
for general use. Of these, only (Qu et al., 2009) introduces concept shift, by changing
generation parameters, but is far too simple, involving only two labels, to be considered
as a good approximation of real-world data. Overall, prior methods produce data which
contains very few attributes and labels, as few as two to three, and are therefore not a
generally good real-world approximation, even though they can be useful for analysing or
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highlighting particular characteristics of certain algorithms. Our framework contributes a
general method which can simulate co-occurrence patterns and dependencies between labels
as found in real data, as well as any number and type of attributes in the attribute space,
and their relationships to the label space. See (Read et al., 2009b) for details.

4. Multi-label Classification Learners

We review some of the base multi-label approaches on the literature implemented in our
framework, and then discuss their applications to data stream contexts.

A simple base-line method for multi-label classification is the binary relevance method
(BR). BR transforms a multi-label problem into multiple binary problems, such that binary
models can be employed to learn and predict the relevance of each label. BR has often been
overlooked in the literature because it fails to take into account label correlations directly
during the classification process (Godbole and Sarawagi, 2004; Tsoumakas and Vlahavas,
2007; Read et al., 2008), although there are several methods that overcome this limitation
e.g. (Cheng and Hüllermeier, 2009; Godbole and Sarawagi, 2004; Read et al., 2009a). BR

can be applied directly to data streams by using incremental binary base models.
An alternative paradigm to BR is the label combination or label powerset method (LC). LC

transforms a multi-label problem into a single-label (multi-class) problem by treating all
label combinations as atomic labels, i.e. each label set becomes a single class-label within
a single-label problem. Thus, the set of single class-labels represents all distinct label
subsets in the original multi-label representation. Disadvantages of LC include its worst-
case computational complexity and tendency to over-fit the training data, although this
problem has been largely overcome by newer methods (Tsoumakas and Vlahavas, 2007;
Read et al., 2008).

Another multi-label approach is pairwise classification (PW), where binary models are
used for every possible pair of labels(Fürnkranz et al., 2008). PW performs well in some
contexts, but the complexity in terms of models ((L× (L− 1)/2) for L labels) means that
this approach is usually intractable on larger problems.

A less common approach is that of applying a threshold to the confidence outputs (e.g.
posterior probabilities) of a single-label classifier, for each test instance, and treating all
class labels falling above a threshold as the relevant labels. Multi-label training examples
are duplicated at training time, so as to create one single-label example for each relevant
label. We call this the ranking and threshold method (RT)(Tsoumakas and Katakis, 2007).

Note that these are all problem transformation methods, wherein a multi-label problem
is transformed into one or more single-label problems, and any off-the-shelf multi-class
classifier (or binary in the case of BR and PW) can be used. These methods are interesting
generally due to their flexibility and general applicability. In fact, all methods in the
literature use, mention or compare to them.

4.1. Using Problem Transformation Methods in Data Streams

An important advantage of problem transformation is the ability to use any off-the-shelf
single-label base classifier to suit requirements. In this section we discuss using incremental
classifiers to meet the requirements of data streams.
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4.1.1. BR-based methods in data-stream settings

BR-based methods are composed of binary classifiers; one for each label. It is straightforward
to apply BR to a data stream contexts by using an incremental classifier for the binary
models. The advantages of BR methods, many of which are also particularly beneficial to
data streams, are low time complexity and the ability to run in parallel, as well as a good
resistance to label-set overfitting (since this method learns on a per-label basis). Class-label
imbalance in BR schemes may become exacerbated by a huge numbers of training examples,
therefore prior works has developed countermeasures, e.g. per-label thresholding methods
or classifier weightings (Ráez et al., 2004).

In (Read et al., 2009a) we introduced ensembles of BR (EBR), and ensembles of classifier-
chains (ECC). Both these methods can perform in a streaming fashion by simply employing
incremental binary base classifiers.

4.1.2. LC-based methods in incremental settings

Using LC-based methods for incremental classification implies a single-label problem with
the special case that the label space expands over time. This is because LC’s single-label
transformation treats every label combination as a single-label, but in a stream environment
new combinations appear over time. One of two strategies can be employed: either an
algorithm adaptation to be able to accommodate changes to the label space over time; or
problem transformation, where a number of examples are initially buffered, so as to prime
an LC model with label combinations, which can learn thereafter in an incremental fashion.
During buffering, another incremental method can serve to adhere to the ‘ready to predict
at any point’ requirement (for example, RT, see below).

A possible algorithm adaptation strategy is to alter label-priors in a Naive Bayes scheme
to account for the introduction of new class labels over time. The potential rapid growth of
the label space in this scenario would make time complexity difficult to control. The problem
transformation strategy has lower time complexity bounds, although the LC model, once
built, is forced to discard any training examples with new label combinations, since the
model cannot account for them, and is therefore very sensitive to variations in the label
space. The buffer may need to be rather large, or the model may need to be restarted on a
regular basis.

The PS method we presented in (Read et al., 2008) is actually well suited to the buffering
scheme. Since rare label sets are sub-sampled for common label sets, far fewer sets need
to be discarded during classification. As a result, a PS model is much more robust against
variation in the label-space, and needs to be restarted less frequently (or can be primed with
a smaller buffer). The ensemble setting we presented (EPS) further mitigates the negative
effects of buffering by reducing overfitting on the original label space.

4.1.3. PW-based methods in data-stream settings

PW-based methods can be used with incremental classifiers, and this has been done in the
past (Fürnkranz et al., 2008). These methods can be used only if the number of labels
considered is very limited. As in this paper, we would like to consider the case where the
number of labels is not restricted, we don’t use PW-based methods in our experiments.
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4.1.4. RT-based methods in incremental settings

The RT method of classification can be seen as a special case of LC where each class label
is a “combination”, with the advantage over LC that it can be used directly as we know
the number of labels, and therefore the number of posible combinations before classification
begins. However, like BR and PW, RT does not explicitly model label combinations.

4.1.5. Multi-label Hoeffding Trees

The Hoeffding Tree is the state-of-the-art classifier for single-label data streams, and it
performs prediction by choosing the majority class at each leaf. Predictive accuracy can be
increased by adding naive Bayes models at the leaves of the trees. A Multi-label Hoeffding
Tree is an extension of the Hoeffding Tree to deal with multi-label data

We emphasise that PS in this context meets all the requirements of a data stream: it
always updates its model incrementally, does not store instances (only a constant number
of distinct label combinations are stored at each leaf), and predicting and learning are
carried out in real time.

4.1.6. Ensemble Methods

A popular way to achieve superior predictive performance, scalability and parallelization is
to use ensemble learning methods, combining several models under a voting scheme to form
a final prediction.

To allow adaption to concept drift we consider ADWIN Bagging (Bifet et al., 2009) i.e. bag-
ging using ADWIN as a change detector. ADWIN is a change detector and estimator that keeps
a variable-length window of recently seen items with theoretical guarantees on memory.
When change is detected, under-performing (i.e. supposedly out-dated) ensemble members
are discarded and replaced with fresh ones.

5. Conclusions

We presented a new experimental framework for multi-label data-stream classification, ex-
tension of MOA (Bifet et al., 2010). MOA can be found at: http://moa.cs.waikato.ac.nz
Our experimental framework is the first of its kind involving instance-incremental multi-
label stream classifiers, generating a range of synthetic multi-label data, and employing a
variety of multi-label evaluation measures.
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