
JMLR: Workshop and Conference Proceedings 17 (2011) 48–55 2nd Workshop on Applications of Pattern Analysis

MOA Concept Drift Active Learning Strategies for
Streaming Data

Indrė Žliobaitė izliobaite@bournemouth.ac.uk
Bournemouth University, Poole, UK

Albert Bifet abifet@cs.waikato.ac.nz

Geoff Holmes geoff@cs.waikato.ac.nz

Bernhard Pfahringer bernhard@cs.waikato.ac.nz

Department of Computer Science

University of Waikato, Hamilton, New Zealand

Editor: Tom Diethe, José L. Balcázar, John Shawe-Taylor, and Cristina T̂ırnăucă

Abstract

We present a framework for active learning on evolving data streams, as an extension to the
MOA system. In learning to classify streaming data, obtaining the true labels may require
major effort and may incur excessive cost. Active learning focuses on learning an accurate
model with as few labels as possible. Streaming data poses additional challenges for active
learning, since the data distribution may change over time (concept drift) and classifiers
need to adapt. Conventional active learning strategies concentrate on querying the most
uncertain instances, which are typically concentrated around the decision boundary. If
changes do not occur close to the boundary, they will be missed and classifiers will fail to
adapt. We propose a software system that implements active learning strategies, extending
the MOA framework. This software is released under the GNU GPL license.

1. Introduction

Supervised learning models the relationship between the observed variables of an instance
and the target variable (label). To build a predictor we need to know the true labels of the
training data. Often unlabeled data is abundant but labeling is expensive. Labels can be
costly to obtain due to required human input (labor cost). Consider, for example, textual
news arriving as a stream. The goal is to predict if a news item will be interesting to a given
user at a given time. The interests of the user may change. To obtain training data the
historical news needs to be read and labeled as interesting or not interesting. This requires
human labor. For instance, Amazon Mechanical Turk1 provides a marketplace for intelli-
gent human labeling. Labeling can also be costly due to a required expensive, intrusive or
destructive laboratory test. Consider a production process in a chemical plant where the
goal is to predict the quality of production output. The relationship between input and
output quality might change over time due to constant manual tuning, complementary in-
gredients or replacement of physical sensors. In order to know the quality of the output (the

1. https://www.mturk.com

c© 2011 I. Žliobaitė, A. Bifet, G. Holmes & B. Pfahringer.



MOA Active Learning

true label) a laboratory test needs to be performed which is costly. Under such conditions
it may be unreasonable to require true labels for all incoming instances.

Active learning studies how to label selectively instead of asking for all true labels. It has
been extensively studied in pool-based (Lewis and Gale, 1994) and online settings (Cohn
et al., 1994). In pool-based settings the decision concerning which instances to label is made
from all historical data. In this paper we explore active learning in data stream settings,
where this decision needs to be made immediately for every incoming instance, as there is
no re-access to it. The main difference between online active learning and active learning
in data streams is in expectations around changes. Online active learning typically fixes
a threshold (e.g. an uncertainty threshold) and asks for the true label if the threshold
is exceeded. In data streams the relationship between the input data and the label may
change (concept drift) and these changes can happen anywhere in the instance space. Thus,
existing active learning strategies may never query instances from some regions and thus
may never know that changes are happening and therefore never adapt. Moreover, in data
streams we cannot keep the decision threshold or a region of uncertainty fixed, as eventually
the system would stop learning and fail to react to changes. Finally, active learning with
data streams must preserve the incoming data distribution to the extent that changes could
be detected as they happen.

In brief, the framework setting is as follows. Data arrives in a stream, and predictions need
to be made in real time. Concept drift is expected, thus learning needs to be adaptive. The
true label can be requested immediately or never, as the instances are regularly discarded
from memory. Our goal is to maximize prediction accuracy over time, while keeping the
labeling costs fixed within an allocated budget. After scanning an instance and outputting
the prediction for it, we need a strategy to decide, whether or not to query for the true label
so that our model could train itself with this new instance. Regular retraining is needed
due to changes in data distribution. Active learning strategies in data streams in addition
to being able to learn an accurate classifier in stationary situations, need to be able to

• balance the labeling budget over time;

• notice changes happening anywhere in the instance space;

• preserve the distribution of the incoming data for detecting changes;

To the best of our knowledge this framework is the first to address active learning for
instance-incremental streaming data (we preclude methods that learn from a stream in
batches) where historical data cannot be stored in memory.

2. Strategies

In this Section we present active learning strategies for data streams. We start with two
basic techniques and discuss their drawbacks. Then we introduce two new strategies in two
steps, where each step aims to overcome a challenge posed by the data stream setting. We
start with a formal definition of our setting.

49



Žliobaitė Bifet Holmes Pfahringer

Algorithm 1: Active Learning Framework

Input: labeling budget B and strategy parameters
for each Xt - incoming instance, do

if ActiveLearningStrategy(Xt, B, . . .) = true then
request the true label yt of instance Xt

train classifier L with (Xt, yt)
if Ln exists then

train classifier Ln with (Xt, yt)
end
if change warning is signaled then

start a new classifier Ln

end
if change is detected then

replace classifier L with Ln

end

end

end

2.1. Setting

Let Xt be an instance, yt its true label, where t indicates the time when an instance arrives.
X1, X2, . . . , Xt, . . . is then a data stream. The labeling cost is the same for any instance.
We impose a budget B to obtain the true labels, which is expressed as a fraction of the
number of incoming instances. B = 1 means that all arriving instances are labeled, whereas
B = 0.2 means that 20% of the arriving instances are labeled.

Algorithm 1 shows our framework, that combines active learning strategies with adaptive
learning. In our framework we use the change detection technique of (Gama et al., 2004):
when the accuracy of the classifier begins to decrease a new classifier is built and trained
with new incoming instances. When a change is detected, the old classifier is replaced by
the new one.

2.2. Random strategy

The first (baseline) strategy is naive in the sense that it labels the incoming instances
at random instead of actively deciding which label would be more relevant. For every
incoming instance the true label is requested with a probability B, where B is the budget.
See Algorithm 2 for a formal description.

Algorithm 2: Random(Xt, B)

Input: Xt - incoming instance, B -labeling budget.
Output: label ∈ {true, false} indicates whether to request the true label yt.

generate a uniform random variable ξt ∈ [0, 1]
return ξt < B

50



MOA Active Learning

2.3. Fixed Uncertainty strategy

Uncertainty sampling is perhaps the simplest and the most common active learning strategy
(Settles, 2009). The idea is to label the instances for which the current classifier is the least
confident. In an online setting it corresponds to labeling the instances for which the certainty
is below some fixed threshold. A simple way to measure uncertainty is to use the posterior
probability estimates, output by a classifier. The uncertainty strategy with a fixed threshold
is presented in Algorithm 3.

Algorithm 3: FixedUncertainty(Xt, θ, L)

Input: Xt - incoming instance , θ - labeling threshold, L - trained classifier
Output: label ∈ {true, false} indicates whether to request the true label yt.

ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
return PL(ŷt|Xt) < θ

2.4. Variable uncertainty strategy

One of the challenges with the uncertainty strategy in a streaming data setting is how
to distribute the labeling effort over time. If we use a fixed threshold after some time a
classifier would either exhaust its budget or reach the threshold certainty. In both cases it
will stop learning and thus fail to adapt to changes.

Instead of labeling the instances that are less certain than the threshold we would like
to label the least certain instances within a time interval. Thus we introduce a variable
threshold, which adjusts itself depending on the incoming data to align with the budget. If
a classifier becomes more certain (stable situations), the threshold expands to be able to
capture the most uncertain instances. If a change happens and suddenly a lot of labeling
requests appear, then the threshold is contracted to query the most uncertain instances
first.

It may seem counter intuitive that we are asking for more labels at certain situations
and fewer labels at changes. In fact, our dynamic threshold assures that we are asking for
the same number of labels in all situations. This is how we balance the budget as we do
not know when or how often changes will be happening, so we aim to spend the budget
uniformly over time.

The uncertainty strategy with a variable threshold is described in Algorithm 4.

2.5. Uncertainty strategy with randomization

The uncertainty strategy always labels the instances that are close to the decision boundary
of the classifier. In data streams changes may happen anywhere in the instance space. When
concept drift happens in labels the classifier will not notice it without the true labels. In
order not to miss concept drift we would like, from time to time, to label the instances about
which the classifier is very certain. For that purpose for every instance we randomize the
labeling threshold by multiplying by a normally distributed random variable that follows
N (1, δ). This way we will label the instances that are close to the decision boundary more
often, but occasionally we will also label some distant instances.

51



Žliobaitė Bifet Holmes Pfahringer

Algorithm 4: VariableUncertainty(Xt, L,B, s)

Input: Xt - incoming instance , L trained classifier, B - budget, s - adjusting step.
Output: label ∈ {true, false} indicates whether to request the true label yt.
Starting defaults: total labeling cost u = 0, initial labeling threshold θ = 1.

if (u/t < B) then
// budget is not exceeded

ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
if (PL(ŷt|Xt) < θ) then

// uncertainty below the threshold

u = u+ 1 // labeling costs increase

θ = θ(1− s) // the threshold decreases

return true

else
// certainty is good

θ = θ(1 + s) // make the uncertainty region wider

return false
end

else
// budget is exceeded

return false
end

52



MOA Active Learning

This strategy trades off labeling some very uncertain instances for labeling very certain
instances, in order not to miss changes. Thus, in stationary situations this strategy is
expected to perform worse than the uncertainty strategy, but in changing situations it is
expected to adapt faster. The uncertainty strategy with randomization is presented in
Algorithm 5.

Algorithm 5: VariableRandomizedUncertainty(Xt, L,B, s, δ)

Input: Xt - incoming instance , L trained classifier, B - budget, s - adjusting step,δ -
variance of the threshold randomization.

Output: label ∈ {true, false} indicates whether to request the true label yt.
Starting defaults: total labeling cost u = 0, initial labeling threshold θ = 1.

if (u/t < B) then
// budget is not exceeded

ŷt = arg maxy PL(y|Xt), where y ∈ {1, . . . , c} is one of the class labels.
θrandomized = θ × η, where η ∈ N (1, δ) is a random multiplier,
if (PL(ŷt|Xt) < θrandomized) then

// uncertainty below the threshold

u = u+ 1 // labeling costs increase

θ = θ(1− s) // the threshold decreases

return true
else

// certainty is good

θ = θ(1 + s) // make the uncertainty region wider

return false
end

else
// budget is exceeded

return false
end

Table 1 summarizes the four strategies with respect to the requirements indicated in the
introduction. The random strategy satisfies all three requirements. Randomized uncertainty
satisfies budget and coverage, but it produces biased labeled data. The variable uncertainty
satisfies only budget and the fixed uncertainty satisfies none.

53



Žliobaitė Bifet Holmes Pfahringer

Table 1: Summary of strategies.
Controlling Instance space Labeled Data

Budget Coverage Distribution

Random present full iid
Fixed uncertainty no fragment biased
Variable uncertainty handled fragment biased
Randomized uncertainty handled full biased

change

change

original close change remote change

Figure 1: Data with changes close and far
from the decision boundary.

random fixed unc. rand. unc.

Figure 2: 20% of the true labels queried
with different labeling strategies.

3. Analysis of how the labeling strategies learn

In this section we explore the main learning aspects of the strategies: the ability to notice
changes in dynamic situations and to learn accurate classifiers in stationary situations. In
order to demonstrate the behavior of the strategies in controlled settings we employ syn-
thetic data in 2D. The data is distributed uniformly at random in a square, the distribution
p(X) does not change over time, p(y|X) changes. This data represents a binary classifica-
tion problem. The initial decision boundary is set at x1 = x2, as illustrated in Figure 1
(left).

Figure 2 shows how the strategies work on the hyperplane problem. The instances that
would be labeled by different strategies are visualized. Each strategy labels the same number
of instances. The random strategy labels uniformly from the instance space, while the un-
certainty strategy concentrates around the decision boundary. The randomized uncertainty
infuses randomization into the uncertainty sampling to cover the full instance space.

4. Website, Tutorials, and Documentation

The MOA framework (Bifet et al., 2010) (software available at http://moa.cs.waikato.

ac.nz/) provides an environment for running experiments in a data stream context.
The website includes a tutorial, an API reference, a user manual, and a manual about

mining data streams. Several examples of how the software can be used are available.
An active classifier will encapsulate all the active learning strategies and will allow to have

benchmark streaming data experiments through stored, shared, and repeatable settings
for synthetic and real data. A proper testing on real or synthetic datasets can be found
in (Žliobaitė et al., 2011).

54



MOA Active Learning

5. Conclusions

We presented an experimental framework for active learning classification on data streams,
so that it is easy for researchers to run experimental data stream learning benchmarks
on active learning settings. We proposed and implemented active learning strategies for
streaming data when changes in the data distribution are expected. Our strategies are
equipped with mechanisms to control and distribute the labeling budget over time, to
balance the labeling for learning more accurate classifiers and to detect changes. This work
can be considered as the first step in active learning in the data stream setting.

Acknowledgements. Part of the research leading to these results has received funding
from the EC within the Marie Curie Industry and Academia Partnerships and Pathways
(IAPP) programme under grant agreement no. 251617.

References

Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm
Jansen, and Thomas Seidl. MOA: Massive Online Analysis, a Framework for Stream
Classification and Clustering. JMLR - Proceedings Track, 11:44–50, 2010.

D. Cohn, l. Atlas, and R. Ladner. Improving generalization with active learning. Machine
Learning, 15:201–221, May 1994. ISSN 0885-6125.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detection. In
SBIA’04, pages 286–295, 2004.

D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In ACM SIGIR,
pages 3–12, 1994.

B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009.

Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. Active learning with
evolving streaming data. In ECML-PKDD ’11, pages 597–612. Springer-Verlag, 2011.

55


