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Abstract

A primary object of causal reasoning con-
cerns what would happen to a system un-
der certain interventions. Specifically, we
are often interested in estimating the prob-
ability distribution of some random vari-
ables that would result from forcing some
other variables to take certain values. The
renowned do-calculus (Pearl 1995) gives a
set of rules that govern the identification
of such post-intervention probabilities in
terms of (estimable) pre-intervention proba-
bilities, assuming available a directed acyclic
graph (DAG) that represents the underlying
causal structure. However, a DAG causal
structure is seldom fully testable given pre-
intervention, observational data, since many
competing DAG structures are equally com-
patible with the data. In this paper we ex-
tend the do-calculus to cover cases where the
available causal information is summarized
in a so-called partial ancestral graph (PAG)
that represents an equivalence class of DAG
structures. The causal assumptions encoded
by a PAG are significantly weaker than those
encoded by a full-blown DAG causal struc-
ture, and are in principle fully testable by
observed conditional independence relations.

1 INTRODUCTION

For various practical purposes, such as policy analy-
sis or decision making in general, we need to predict
effects of actions or interventions before actually car-
rying them out. In many cases, the task is to pre-
dict what values or probability distributions of some
variables would result from certain interventions on
some other variables, based on data collected via pas-
sive observations without any active intervention. For

such inferences, information about causal structure is
needed to provide a link between pre-intervention and
post-intervention probability distributions.

A prominent approach to tackling this problem makes
use of graphical (or, equivalently, structural equa-
tional) representations of causal structure (Dawid
2002, Pearl 2000, Spirtes et al. 2000). Here we focus on
the do-calculus developed by Pearl (1995, 2000). The
calculus features three rules that facilitate transform-
ing post-intervention probabilities to estimable pre-
intervention probabilities. The rules are formulated
with reference to a directed acyclic graph (DAG) that
specifies the exact causal structure over a given set of
observed and latent variables. The assumed causal di-
agram, however, is usually statistically indistinguish-
able from a lot of alternative ones, and hence is not
fully testable using observational data. Sometimes
such a causal diagram may be supplied by domain or
expert knowledge, but when there is no substantial
background causal knowledge to begin with, we may
have to rely on limited causal information learnable
from data.

In this paper, we give analogues of the do-calculus
based on the formalism of ancestral graphical models.
In particular, we present a do-calculus with respect to
partial ancestral graphs (PAGs) that are fully testable
given observational data. Since a PAG essentially rep-
resents an equivalence class of DAG structures (with
possibly extra latent variables), it encodes substan-
tially weaker definite causal information than a single
DAG does. Yet still, it is usually possible to identify
some post-intervention probabilities relative to a PAG,
as we shall illustrate with the generalized do-calculus.

The rest of the paper is organized as follows. After
introducing the necessary background in Section 2, we
first develop a do-calculus relative to what is called
maximal ancestral graphs (MAGs) in Section 3. Based
on that we present a do-calculus relative to PAGs in
Section 4. We end the paper with a simple illustration
in Section 5 and a few remarks about related open



questions in Section 6 .

2 PRELIMINARIES

2.1 DO OPERATOR AND DO CALCULUS

The fundamental basis for do-calculus and related
methods is an interpretation of interventions as local
and effective surgeries on a causal system. We will fo-
cus on what Pearl calls atomic interventions, which are
what do-calculus deals with. Given a set of variables V
whose causal structure can be represented by a DAG
G1 and whose distribution factorizes according to G, an
atomic intervention forces some subset of variables X
to take certain values x. The intervention is supposed
to be effective in the sense that the value of X is com-
pletely determined by the intervention, and local in the
sense that the conditional distributions of other vari-
ables (variables not in X) given their respective par-
ents are not affected by the intervention. Symbolically
the intervention will be represented by a do-operator:
do(X = x). With these restrictions, it readily follows
that:

P (V\X|do(X = x)) =
∏

Y ∈V\X
P (Y |Pa(Y )) (∗)

Note that we use P (Z|W, do(X = x)) to denote a
post-intervention probability distribution: the distri-
bution of Z conditional on (possibly empty) W after
the intervention do(X = x), and Pa(Y ) to denote the
set of parents of Y in the causal structure G. Versions
of the above formula can be found in Robins (1986),
Pearl (2000) and Spirtes et al. (2000).

By formula (∗), if the pre-intervention joint probability
is estimable, then any post-intervention probability is
also estimable given the true causal structure. A com-
plication comes in when there are latent variables in
V. In that case, whether a certain post-intervention
probability is identifiable depends on whether, given
the true causal structure, it is a functional of the pre-
intervention marginal probability of the observed vari-
ables.

The celebrated do-calculus aims to deal with such situ-
ations. It gives inference rules formulated relative to a
DAG with (possibly) latent variables. The antecedents
of the rules involve surgeries on the causal DAG. Given
a DAG G and a subset of variables X in G, let GX de-
note the graph resulting from deleting all edges in G
that are into variables in X, and GX denote the graph
resulting from deleting all edges in G that are out of
variables in X. The following proposition summarizes

1The causal interpretation of a DAG is simple: an arrow
from X to Y means that X is a direct cause of Y relative
to V (Spirtes et al. 2000).

Pearl’s do-calculus, which makes use of the well-known
d-separation criterion.

Proposition 1 (Pearl). Let G be the causal DAG
for V, and X,Y,Z,W be disjoint subsets of V. The
following rules are sound:

1. if Y and Z are d-separated by X∪W in GX, then

P (Y|do(X),Z,W) = P (Y|do(X),W)

2. if Y and Z are d-separated by X ∪ W in GZX,
then

P (Y|do(X), do(Z),W) = P (Y|do(X),Z,W)

3. if Y and Z are d-separated by X ∪ W in GXZ′ ,
then

P (Y|do(X), do(Z),W) = P (Y|do(X),W)

where Z′ = Z\AncestorG
X
(W).

The proposition follows from formula (∗) (see Pearl
1995 for a proof). The soundness ensures that any
post-intervention probability that can be reduced via
the calculus to an expression that only involves pre-
intervention probabilities of observed variables is iden-
tifiable. Very recently, the completeness of the calcu-
lus was also established, in the sense that any identi-
fiable post-intervention probability can be so reduced
(Huang and Valtorta 2006, Shpister and Pearl 2006).

However, the causal DAG assumed by the do-calculus
is not fully testable, and hence relies on substantial
background knowledge. When such knowledge is not
available, we may have to rely on causal information
that is learnable from data. Of course such informa-
tion is typically very limited, but as shown in Spirtes
et al. (2000, chapter 7) and Richardson and Spirtes
(2003), the limited information can still warrant in-
teresting causal reasoning in many cases. Our aim
is to devise an analogous do-calculus relative to par-
tial information about the underlying causal structure,
represented by a PAG.

2.2 MAGs AND PAGs

Ancestral graphs are introduced to represent data gen-
erating processes that may involve latent confounders
and/or selection bias without explicitly modelling the
unobserved variables (Richardson and Spirtes 2002).
We are not concerned with selection bias here, so we
will use only part of the machinery.

A mixed graph is a graph that may contain two kinds
of edges: directed edges or arrows (→), and bi-directed
edges or double-headed arrows (↔). All the familiar



graphical notions for DAGs, adjacency, parent/child,
ancestor/descendant, path and directed path, obviously
remain meaningful. In addition, if there is a bi-
directed edge X ↔ Y in a mixed graph G, then X
is called a spouse of Y and Y a spouse of X. An al-
most directed cycle occurs if there are two variables A
and B such that A is both an ancestor and a spouse
of B.

Given a path u = 〈V0, ..., Vn〉 with n > 1, Vi (1 ≤
i ≤ n − 1) is a collider on u if the two edges incident
to Vi are both into Vi, i.e., have an arrowhead at Vi;
otherwise it is a noncollider on u. A path is called
a collider path if every vertex on it (except for the
endpoints) is a collider along the path. Let L be any
subset of vertices in G, an inducing path relative to L is
a path on which every vertex not in L (except for the
endpoints) is a collider on the path and every collider
is an ancestor of an endpoint of the path. When L is
empty we simply call the path an inducing path.2

A mixed graph is ancestral if it does not contain any
directed or almost directed cycle. It is maximal if no
inducing path is present between any two non-adjacent
vertices in the graph. A MAG is a mixed graph that is
both ancestral and maximal. Note that syntactically a
DAG is a special case of MAG, simply a MAG without
bi-directed edges.

There is an obvious extension of the d-separation
criterion to MAGs, which, following Richardson and
Spirtes (2002), we call m-separation.

Definition 1 (m-separation). In a mixed graph,
a path u between vertices X and Y is active (m-
connecting) relative to a set of vertices Z (X, Y /∈ Z)
if

i. every non-collider on u is not a member of Z;

ii. every collider on u is an ancestor of some member
of Z.

X and Y are said to be m-separated by Z if there is
no active path between X and Y relative to Z.

A nice feature of MAGs is that they can represent the
marginal independence models of DAGs in the follow-
ing sense: given any DAG G over V = O∪L – where O
denotes the set of observed variables, and L denotes
the set of latent variables – there is a MAG over O
alone such that for any three disjoint sets of variables
X,Y,Z ⊆ O, X and Y are d-separated by C in G if
and only if they are m-separated by C in the MAG.
The following construction gives us such a MAG:

2It is called a primitive inducing path in Richardson and
Spirtes (2002).

Input: a DAG G over 〈O,L〉
Output: a MAG MG over O

1. for each pair of variables A,B ∈ O, A and B are
adjacent in MG if and only if there is an inducing
path between them relative to L in G;

2. for each pair of adjacent variables A,B in MG ,
orient the edge as A → B in MG if A ∈ AnG(B);
orient it as A ← B in MG if B ∈ AnG(A); orient
it as A ↔ B in MG otherwise.

It can be shown that MG is indeed a MAG and
represents the marginal independence model over O
(Richardson and Spirtes 2002). More importantly, no-
tice that MG also retains the ancestral relationships
— and hence causal relationships under the standard
interpretation — among O in G. So, if G is the causal
DAG for 〈O,L〉, it is fair to callMG the causal MAG
for O.

Throughout the paper we will rely on the following
simple example from Spirtes et al. (2000) to illustrate.
Suppose we are able to measure the following random
variables: Income (I), Parents’ smoking habits (PSH),
Smoking (S), Genotype (G) and Lung cancer (L) (The
exact domain of each variable is not relevant for the
illustration). The data, for all we know, are generated
according to an underlying mechanism which might in-
volve unmeasured common causes. Suppose, unknown
to us, the structure of the causal mechanism is the one
in Figure 1, where Profession is an unmeasured com-
mon cause of Income and Smoking.

Income Smoking Lung Cancer

Genotype

Profession

Parents’ smoking habits

Figure 1: A causal DAG with a latent variable

This DAG structure corresponds to the MAG in Fig-
ure 2(a) (which happens to be a DAG syntactically).
Different causal DAGs may correspond to the same
causal MAG. So essentially a MAG represents a set of
DAGs that have the exact same d-separation structure
and ancestral relationships among the observed vari-
ables. A causal MAG thus carries uncertainty about
what the true causal DAG is, but also represents com-
mon features shared by all possible causal DAGs.
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Figure 2: Two Markov Equivalent MAGs

There is then an obvious causal interpretation of
MAGs, derivative from the causal interpretation of
DAGs. A directed edge from A to B in a MAG means
that A is a cause of B (which is a shorthand way of
saying that there is a causal pathway from A to B
in the underlying DAG); a bi-directed edge between
A and B means that A is not a cause of B and B is
not a cause of A, which implies that there is a latent
common cause of A and B in the underlying DAG.

For the purpose of causal reasoning, it is important to
single out a special kind of directed edges in a MAG,
which we will call visible directed edges.

Definition 2 (visibility). Given a MAG M, a di-
rected edge A → B in M is visible if there is a vertex
C not adjacent to B such that there is an edge between
C and A that is into A or there is a collider path be-
tween C and A that is into A and every vertex on the
path is a parent of B. Otherwise A → B is said to be
invisible.

For example, in Figure 2(a) the edge S → L is visible,
whereas the edge I → S is not. The importance of the
distinction in terms of visibility is due to the following
fact:

Lemma 1. Let G(O,L) be a DAG, and MG be the
MAG over O that represents the DAG. For any A,B ∈
O, if A ∈ AncestorG(B) and there is an inducing
path between A and B that is into A relative to L in
G, then there is a directed edge A → B in MG that is
invisible.

Proof Sketch: By the construction of MG , it is clear
that there is a directed edge A → B in MG because
A ∈ AncestorG(B) and there is an inducing path be-
tween A and B relative to L. What is left to check
is that the edge A → B in MG does not satisfy the
condition for visibility due to the fact that the said
inducing path is into A in G. Due to lack of space, we
refer interested readers to the proof in Zhang (2006,
Lemma 5.1.1).

Lemma 1 implies that if A → B is visible in the causal
MAG, then in the true causal DAG, no matter which
one it is, there is no inducing path into A between A
and B relative to the set of latent variables. But if a
latent variable is a common cause of A and B, then

there immediately is an inducing path into A via that
latent common cause. Therefore, a visible directed
edge between two variables implies that they do not
have a latent common cause. Conversely, if a directed
edge between two variables is invisible in the MAG,
one can always construct a compatible DAG in which
there is a latent common cause of the two variables.
Thus whether a directed edge is visible conveys ex-
tremely important information about the possibility
of a latent confounder.

Although a MAG encodes weaker causal assumptions
than a DAG does, it is still not fully testable most of
the time due to the existence of Markov equivalent al-
ternatives. Just as different DAGs can share the exact
same d-separation features and hence entail the exact
same conditional independence constraints, different
MAGs can entail the exact same constraints by the
m-separation criterion as well. For example, the two
MAGs in Figure 2 are Markov equivalent.

Several characterizations of the Markov equivalence
between MAGs are available (e.g., Ali et al. 2004,
Zhang and Spirtes 2005). For the present purpose, it
suffices to note that all Markov equivalent MAGs have
the same adjacencies and usually some common edge
orientations as well. This motivates the following rep-
resentation of equivalence classes of MAGs. Let partial
mixed graphs denote such graphs that can contain four
kinds of edges: →, ↔, ◦−−◦ and ◦→, and hence three
kinds of end marks for edges: arrowhead (>), tail (−)
and circle (◦).
Definition 3 (PAG). Let [G] be the Markov equiva-
lence class of an arbitrary MAG G. The partial ances-
tral graph (PAG) for [G], PG, is a partial mixed graph
such that

i. PG has the same adjacencies as G (and hence any
member of [G]) does;

ii. A mark of arrowhead is in PG if and only if it is
shared by all MAGs in [G]; and

iii. A mark of tail is in PG if and only if it is shared
by all MAGs in [G].3

Basically a PAG represents an equivalence class of
MAGs by displaying all common edge marks shared
by all members in the class and displaying circles for
those marks that are not common, much in the same
way that a Pattern (a.k.a. a PDAG or an essential
graph) represents an equivalence class of DAGs. For
example, Figure 3 depicts the PAG that represents the
MAGs in Figure 2 (and so the DAG in Figure 1).

3Zhang (2006) uses the name complete or maximally
oriented PAGs. Since we only consider complete ones in
this paper, we will simply call them PAGs.
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Figure 3: The PAG of the causal DAG in Figure 1

Obviously different PAGs, representing different equiv-
alence classes of MAGs, entail different sets of con-
ditional independence constraints. Hence a PAG is
in principle fully testable by the observed conditional
independence relations among the observed variables.
An constraint-based algorithm to learn a PAG from an
oracle of conditional independence relations is given in
Zhang (2006). Score-based algorithms to learn PAGs
are also under investigation.

As already mentioned, we will extend the do-calculus
to PAGs via two steps. First we develop a do-calculus
relative to MAGs, based on which we then develop a
do-calculus relative to PAGs.

3 A DO-CALCULUS W.R.T. MAGs

Since a causal MAG represents an (often infinite) set
of DAGs (with extra latent variables), different DAGs
in the set may rule differently on whether an infer-
ence rule in Pearl’s do-calculation is applicable. We
have no intention here to contribute to the literature
on conflict resolution, so we appeal to the unanimity
rule. We will develop a do-calculus with respect to a
MAG in such a way that a rule is applicable only when
the corresponding rule in Pearl’s calculus is applicable
according to every DAG compatible with the MAG.

Since the antecedents of the rules in the do-calculus
are formulated based on manipulations of the given
DAG and in terms of d-separation, our task becomes
one of defining appropriate manipulations of the given
MAG and formulating appropriate rules in terms of
m-separation. We first define analogous surgeries on
MAGs.
Definition 4 (Manipulations of MAGs). Given a
MAG M and a set of variables X therein,

• the X-lower-manipulation of M deletes all
those edges that are visible in M and are out of
variables in X, replaces all those edges that are
out of variables in X but are invisible in M with
bi-directed edges, and otherwise keeps M as it is.
The resulting graph is denoted as MX.

• the X-upper-manipulation of M deletes all
those edges in M that are into variables in X,

and otherwise keeps M as it is. The resulting
graph is denoted as MX.

We stipulate that lower-manipulation has a higher
priority than upper-manipulation, so that MYX (or
MXY) denotes the graph resulting from applying
the X-upper-manipulation to the Y-lower-manipulated
graph of M.

A couple of comments are in order. First, unlike the
case of DAGs, the lower-manipulation for MAGs may
introduce new edges, i.e., replacing invisible directed
edges with bi-directed edges. The reason we do this
is that an invisible arrow from X to Y , as a conse-
quence of Lemma 1, admits the possibility of a latent
common cause of A and B in the underlying DAG. If
so, the X-lower-manipulated DAG will correspond to
a MAG in which there is a bi-directed edge between X
and Y . Second, because of the possibility of introduc-
ing new bi-directed edges, we need the priority stip-
ulation that lower-manipulation is to be done before
upper-manipulation. The stipulation is not necessary
for DAGs, because no new edges would be introduced
in the lower-manipulation of DAGs, and hence the or-
der does not matter.

Ideally, if M is the MAG that represents a DAG G, we
would like MYX to be the MAG that represents GYX,
where X and Y are two (possibly empty) subsets of the
observed variables. But in general this is impossible,
as two DAGs represented by the same MAG before a
manipulation may correspond to different MAGs after
the manipulation. But we still have the following:

Lemma 2. Let G(O,L) be a DAG, and M be the
MAG of G over O. Let X and Y be two possibly empty
subsets of O, and MG

YX
be the MAG of GYX. For

any A,B ∈ O and C ⊆ O that does not contain A or
B, if there is an m-connecting path between A and B
given C in MG

YX
, then there is an m-connecting path

between A and B given C in MYX.

Proof Sketch. The proof makes use of Lemma 1 to
show essentially that for every G represented by M,
there is a MAG M∗ Markov equivalent to MYX such
that MG

YX
is a subgraph of M∗. We refer interested

readers to the proof in Zhang (2006, Lemma 5.2.1).

This lemma shows that Definition 4 is to a large ex-
tent appropriate. It implies that if an m-separation
relation holds in MYX, then it holds in GYX for every
G represented by M. Hence the following corollary.

Corollary 3. Let M be a MAG over O, and X and
Y be two subsets of O. For any A, B ∈ O and C ⊆



O that does not contain A or B, if A and B are m-
separated by C in MYX, then A and B are d-separated
by C in GYX for every G represented by M.

Proof Sketch: By Lemma 2, if A and B are m-
separated by C in MYX, they are also m-separated
by C in MG

YX
, for every G represented by M, which

in turn implies that A and B are d-separated by C
in GYX for every G represented by M, because d-
separation relations among O in a DAG correspond
exactly to m-separation relations in its MAG.

It is worth noting that the converse of Corollary 3 is
not true in general. The reason is roughly this. Lemma
2 is true in virtue of the fact that for every G repre-
sented by M, there is a MAG M∗ Markov equivalent
to MYX such that MG

YX
is a subgraph of M∗. Of-

ten times there exists a G such that the MAG of GYX

is Markov equivalent to MYX. But sometimes there
may not be any such DAG, and when that happens,
the converse of Corollary 3 fails. For this limitation,
however, Definition 4 is not to be blamed. Because
no matter how we define MYX, as long as it is a sin-
gle graph, the converse of Corollary 3 will not hold
in general. Definition 4 is already “minimal” in the
following important sense: two variables are adjacent
in MYX if and only if there exists a DAG G repre-
sented by M such that the two variables are adjacent
in MG

YX
. In more plain terms, MYX does not have

more adjacencies than necessary. We refer readers to
a detailed illustration of this fact in Zhang (2006, pp.
192-193).

We are ready to present a do-calculus relative to a
causal MAG.
Theorem 1 (do-calculus given a MAG). Let M be
the causal MAG over O, and X,Y,Z,W be disjoint
subsets of O. The following rules are valid, in the
sense that if the antecedent of the rule holds, then the
consequent holds no matter which DAG represented by
M is the true causal DAG.

1. if Y and Z are m-separated by X ∪ W in MX,
then

P (Y|do(X),Z,W) = P (Y|do(X),W)

2. if Y and Z are m-separated by X ∪W in MZX,
then

P (Y|do(X), do(Z),W) = P (Y|do(X),Z,W)

3. if Y and Z are m-separated by X ∪W in MXZ′ ,
then

P (Y|do(X), do(Z),W) = P (Y|do(X),W)

where Z′ = Z\AncestorM
X
(W).

Proof Sketch: This readily follows from Proposition 1,
Corollary 3, and the fact that for every G represented
by M, AnG

X
(W) ∩O = AnM

X
(W).

4 A DO-CALCULUS W.R.T. PAGs

The same idea applies in our formulation of a do-
calculus relative to PAGs. Since a PAG represents
an equivalence class of MAGs, we need to formulate
the rules in such a way that a rule is applicable only
when the corresponding rule in Theorem 1 is applica-
ble for every MAG in the equivalence class. For this
purpose, we need to establish some connections be-
tween m-connecting paths in a MAG and analogous
paths in its PAG. We now proceed to define a kind of
such paths in partial mixed graphs in general.

Since in general a partial mixed graph may contain
ambiguous circles as well as unambiguous marks of
tails and arrowheads, a path therein may contain some
variables which cannot be unambiguously classified as
colliders or non-colliders, as well as others that have a
definite status. Let p be any path in a partial mixed
graph. A (non-endpoint) vertex is called a definite
collider on p if both incident edges are into that vertex.
A (non-endpoint) vertex C is called a definite non-
collider on p if one of the incident edges is out of C
or it is A ∗−◦ C ◦−∗ B on p such that A and B are
not adjacent. Likewise, a directed edge A → B in P
is a definitely visible arrow if there is a vertex C not
adjacent to B such that there is an edge between C
and A that is into A or there is a collider path between
C and A that is into A and every vertex on the path is
a parent of B. Obviously these are labelled “definite”
because the available informative marks are enough
to determine their respective status. Furthermore, let
us call a path between A and B a potentially directed
path from A to B if there is no arrowhead on the path
pointing towards A. Variable A is called a possible
ancestor of variable B in a partial mixed graph if there
is a potentially directed path from A to B in the graph.
Definition 5 (Possibly M-Connecting Path). In a
partial mixed graph, a path p between vertices A and B
is possibly m-connecting relative to a set of vertices
Z (A, B /∈ Z) if

i. every definite non-collider on p is not a member
of Z;

ii. every definite collider on p is a possible ancestor
of some member of Z.

We then need to define relevant surgeries on PAGs.
Definition 4 essentially carries over. Given a partial



mixed graph P and a set of variables X, PX denotes
the X-upper-manipulated graph of P, resulting from
deleting all edges in P that are into variables in X, and
otherwise keeping P as it is. PX denotes the X-lower-
manipulated graph of P, resulting from deleting all
definitely visible edges out of variables in X, replacing
all other edges out of vertices in X with bi-directed
edges, and otherwise keeping P as it is. The priority
stipulation is also the same as in Definition 4.

Given a MAG M and its PAG P, since every unam-
biguous edge mark in P is also in M (and indeed in
all MAGs equivalent to M), it is easy to see that a
m-connecting path in M corresponds to a possibly m-
connecting path in P. This is fortunately also true for
MYX and PYX, even though the latter is usually not
the PAG for the former except in rare situations.
Lemma 4. Let M be a MAG over O, and P the PAG
for M. Let X and Y be two subsets of O. For any
A,B ∈ O and C ⊆ O that does not contain A or B, if
a path p between A and B is m-connecting given C in
MYX, then p, the same sequence of variables, forms
a possibly m-connecting path between A and B given
C in PYX.

Proof Sketch: It is not hard to check that for any two
variables P, Q ∈ O, if P and Q are adjacent in MYX,
then they are adjacent in PYX. Furthermore, when
they are adjacent in both MYX and PYX, every non-
circle mark on the edge in PYX is “sound” in that the
mark also appears in MYX. The lemma obviously
follows.

If there is no possibly m-connecting path between A
and B given C in a partial mixed graph, we say A and
B are definitely m-separated by C in the graph. Here
is the main theorem:
Theorem 2 (do-calculus given a PAG). Let P be
the causal PAG for O, and X,Y,Z,W be disjoint sub-
sets of O. The following rules are valid:

1. if Y and Z are definitely m-separated by X ∪W
in PX, then

P (Y|do(X),Z,W) = P (Y|do(X),W)

2. if Y and Z are definitely m-separated by X ∪W
in PXZ, then

P (Y|do(X), do(Z),W) = P (Y|do(X),Z,W)

3. if Y and Z are definitely m-separated by X ∪W
in PXZ′ , then

P (Y|do(X), do(Z),W) = P (Y|do(X),W)

where Z′ = Z\PossibleAncestorP
X
(W).

Proof Sketch: It follows from Lemma 4 and The-
orem 1. The only caveat is that in general
AnM

X
(W) 6= PossibleAnP

X
(W) for an arbitrary

M represented by P. But it is always the case that
AnM

X
(W) ⊆ PossibleAnP

X
(W), which means that

Z\AnM
X
(W) ⊇ Z\PossibleAnP

X
(W) for every M

represented by P. So it is possible that for rule (3),
PXZ′ leaves more edges in than necessary, but it does
not affect the validity of rule (3).

5 ILLUSTRATION

Back to the case depicted in Figure 1. It is certainly
impossible to fully recover this causal DAG from the
data available, as the data alone by no means even
indicate the relevance of the variable Profession. But
we can, given sufficiently large sample, learn the PAG
shown in Figure 3. Although the PAG reveals a limited
amount of causal information, it is sufficient to identify
some post-intervention quantities.

Using the do-calculus presented in Theorem 2, we can
infer P (L|do(S), G) = P (L|S, G) by rule 2, because L
and S are definitely m-separated by {G} in PS (Fig-
ure 4(a)); and P (G|do(S)) = P (G) is true by rule
3, because G and S are definitely m-separated in PS
(Figure 4(b)). It then follows, for instance, that

P (L|do(S)) =
∑

G

P (L,G|do(S))

=
∑

G

P (L|do(S), G)P (G|do(S))

=
∑

G

P (L|S,G)P (G)

S L S L

G
PSH PSH

II

G

(b)(a)

Figure 4: PAG Surgery: PS and PS

By contrast, it is not valid in the do-calculus that
P (L|do(G), S) = P (L|G, S) because L and G are not
definitely m-separated by {S} in PG, which is given in
Figure 5. (Notice the bi-directed edge between L and
G due to the fact that the edge G → L, unlike S → L,
is not definitely visible in P.)



S L

G
PSH

I

Figure 5: PAG Surgery: PG

6 CONCLUSION

Theorem 2 gives us a do-calculus relative to a PAG,
which is in principle learnable from data, or in other
words, represents causal assumptions that are fully
testable. The basic idea is that when any rule in the
calculus is applicable given a PAG, the corresponding
rule in Pearl’s original do-calculus is applicable rela-
tive to each and every DAG (with possibly extra latent
variables) compatible with the PAG. One open ques-
tion is whether the converse is also true, i.e., when-
ever all DAGs compatible with the PAG sanction the
application of a certain rule in the do-calculus, the
corresponding rule is indeed applicable in our calculus
relative to the PAG.

We suspect not. The rules presented in Theorem 2
are probably overly restrictive. First, even if a rule
does not apply given a PAG, the corresponding rule
in Theorem 1 may still apply given every MAG repre-
sented by the PAG. This may be so because a possibly
m-connecting path may not actualize as m-connecting
in any MAG represented by the PAG, and/or be-
cause in general AncestorM

X
(W) is a proper subset

of PossibleAncestorP
X
(W). Secondly, the calculus

based on a MAG given in Theorem 1 may also be “in-
complete”, as the converse of Corollary 3 does not hold
in general. Given these considerations, there may well
be interesting post-intervention quantities that can be
identified by Pearl’s do-calculus given any DAG com-
patible with a PAG (and all these DAGs give the same
answer), but cannot be identified via our do-calculus
based on the PAG directly. We suspect, however, that
such examples would be rare, if any at all. But this
completeness problem is worth further investigation.

The rules in the do-calculus can be readily imple-
mented, but the search for a syntactic derivation in
the calculus to identify a post-intervention probability
is no minor computational task. From an algorith-
mic point of view, do-calculus is probably inferior to a
more algebraic method recently developed to identify
intervention effects given a single causal DAG with la-
tent variables (Tian and Pearl 2004). To adapt that
approach to the case where only a PAG is given is an
ongoing project.
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