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1 Proof of Theorem 1

1.1 First kind error

Here, we prove that the asymptotic first kind error of
the test ¥, does not exceed the prescribed level a. To
this end, denote 7* a real number such that, under Hy,
Vi > 1, c’; = eijf*cj. We skip the dependence of 7* on
c and c*. Using the inequality

N, N
. —ij 2 it (2
min Y [V - e VI <02 Jg - eIl
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we get that a (s, ©g) equals
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< 4ﬁNg;(m 7 —4) > qa
where 7, 7; i N(0,2).

Finally, using Berry-Esseen’s inequality (¢f. Theo-
rem 2), we get

)

0'7@ S
a(Ys,00) < a+ N,

and this gives the desired asymptotic level.

1.2 Second kind error

It remains to study the second kind error of the test,
and to show that it tends to 0. Our proof is based
on the heuristic given in the main paper: we decom-
pose A, (N, ) into several terms, and make use of their
respective orders of magnitude. The decomposition
gives
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with the notation:
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In addition to ¢, 1, introduced in the definition of Ny,
we will need the constant ¢’ and e, defined as
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Separating the different terms to study them indepen-
dently, we write

By, 01) < sup P oo <Dg(c, o) < ﬂap?,)
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with K, = ¢ + € + Mov/CeL
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e Let us first study supg, Pe e <Dg(c, ) < ngpg),

which contains the dominant term when p, is too
C2 — 4L2c; %, Lemma 1 al-
lows to apply Lemma 2 with zg = dp, and M =

kop>. The choice of the parameters yields for o
small enough

large. Denoting § =
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so that the second part of Lemma 2 holds:
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e Let us now turn to P(O’Q\/NUAU > ep2 |. Prior to

using Berry—Esseen’s inequality (¢f. Theorem 2), we

derive 270 > 4\%\/log o1, so that
2
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e Finally, it remains to control P(QUQB(7 > ¢ pf_)
We apply Lemma 3:
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2 Proof of Theorem 2

2.1 First kind error

Here, we prove that the first kind error of the test ¥,
converges to 0. To this end, denote 7* a real number
such that, under Ho, Vj > 1, ¢f = 7" ¢;. We skip the
dependence of 7* on ¢ and c*. Using the inequality

No
min } [Y; 221’5 —e g
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we get that a(z/;(,, @0) is smaller than
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where 7, 7; Z-lf-leJ\/'(O,Z).
Thus, using Berry-Esseen’s inequality (¢f. Theo-
rem 2),
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As Card N (s1,s2) =1+ [(s2 — s1)logo ] is of log-
arithmic order, this implies that a(zzg, @0) — 0.

2.2 Second kind error

Finally, we study the second kind error and prove that
it converges to 0.

For s € [s1, 55), define S = max {t € £ | t < s}, where
we omit the dependence of S in s for simplicity sake.
Note that 0 < s — 5 < Togo=T" S is an approximation
of s which will be sufﬁ(:lent for our purpose according
to Lemma 6.

We introduce the notation

D: (e, c*) = min, { Z;V 7 |e; — e T cH|?
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and computations similar to those of the previous sec-
tion yield

sup sup 5(11[}0’ )<P1+P2+P3a
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with
Py = sup, f supgs.z Pe,cs (Df(c, ) < MU(S)),
M,(S) = 0%\/32 N, ( S) loglogo—1 + %p?,( ),
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e Let us study P;. Lemma 6 implies

(No(8) +1) 7% < p3(8)? < eTmiD? i (s)2,

so that, denoting §% = 02r§—4L26<451il>2 , Lemma 1
allows to apply Lemma 2 with 2o = dp%(s) and M =
M, (S). On the other hand, the convergence of r,
to +oo and the choice of ¢ entail that for o small
enough and for every s in [sq, so],

5 Cr2, . 02+v/2 N,(S)loglog o1
(@ - Cr2y ) - V2D
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Hence, applying the second part of Lemma 5, we get
an inequality where the right-hand side vanishes as
o tends to 0:
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e Consider the second term. Berry-Esseen’s theorem
(¢f. Theorem 2) implies the following inequality,
where the right-hand side converges to 0 as o tends
to 0:

P2 S Card./\f(sl, 82)

-2
. 2, [12s o1
TNy (52) 7Cr2 \flogo—1]

e Let us turn to the third term. We apply Lemma 3
and get an inequality where once again the right-
hand side vanishes as ¢ tends to O:

P3; < Card N(sq, s2)

-
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3 Proof of Theorem 3

Consider a randomized test v in the shifted curve
model. We will define a corresponding test in the clas-
sical model with smaller first and second kind errors,
and it is sufficent to establish the result.

First note that there is a measurable function f
with respect to the o-algebra engendered by the se-
quences Y and Y* and with values in [0, 1] such that
¥ = f(Y,Y*). Denoting € a sequence of i.i.d ran-
dom variables A (0, 02) independent from Y, we define
yelass — E.(f(Y,€)|Y), where E. is the integration
with respect to the probability engendered by €. 1/°12ss
is 0(Y')-measurable and thus constitutes a test for the
classical model.

This testing procedure can be interpreted as a test
in the shifted curve model when ¢* = 0. Indeed,
d(c,c*) = ||c||2 when c* = 0, so that ©§2s x 0 C O,
and @‘flass x 0 C ©;. By Tonelli-Fubini’s theorem,
1p°1ass gatisfies

aclass(wclass7 @Slass) = sup Ec (wclass)

class
e0

= sup Ec,O(f(Yvy#))

class
60

S a(wv @0)

A similar inequality holds concerning the second kind
error.

4 Lemmas

Lemma 1. Let ¢ = (c1,¢2,...) and € = (¢1,C2,...) in
Fs.r, with s > 0, be such that d(c,é) > Cp, and let

N+1> cp‘l/s. Then

N
1 . —ij7~,2> 2 2 —2s\ 2
HED»Zl‘CJ e YTE|* > (CF — 4L c*%)p”.
i

Proof of Lemma 1. Since both ¢ and ¢ belong to the
Sobolev ball, it holds that

D e —e TP < (2e” + 216)%)
Jj>N >N

AN+ 52 (| +181%)
j>N
<AL*(N +1)7%.

Consequently, taking into account that
0 ..
Z lej — e 97|12 > d*(c,é) > C?p?,
j=1
we get that Zjvzl lcj — e™¥7¢;|? equals
(o)
Dol —eTTER =Y ey — eI
Jj=1 J>N
2 02p2 _ 4L2(N + 1)725’

and the result follows in view of N +1 > ¢p~ /5. O

Lemma 2. Let N be some positive integer, let &;,
éj, 7 =1,...,N be independent complex valued ran-
dom variables such that their real and imaginary parts
are independent standard Gaussian variables, and let
c=(c1,...,¢en), €= (C1,...,CN) be complex vectors.
Denote &€ = (&1,...,¢éNn), €= (&1,...,&N) and

DU,N(Ca é) — min_,_ { Zjvzl ‘Cj — e*ijT&j|2

+20 300 Re ((¢; — e797¢;)(&; — e’iﬁgj))},
~ .12

dn+(c,¢) = \/Z;'V:I |ej — e 7],

N Re [éj(cj—e*ij"éj)}
Zj:l dn,-(c,¢) ‘

unN (Ea c, &) = Sup,

Assume that xo < min, dy ,(c,€), then for every real
M,

+ 2P<:1720 < oun(&, ¢, é)>

Assume further that ¢ and ¢ are in Fy 1 and that %> —
% > 0, then combining the last result with Lemma 5,

P(D(,(c, &) < M) < 2(1 +ag'L max{l,Nl_s})

X (exp{ — (2§ — M)?/32330%} + exp { — x8/802}).
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Proof of Lemma 2.

N —
Z |cj - 67ij75j|2 + 20 Re(cj — eiijTéj)(fj — e 7))

j=1

> diy ,(c,e) — 20dn ;(c, &) un (€, c, )
— 20dn (¢, &) un (€, & c),

where upn(€,¢,&) = sup,
Further,

j=1 dn,-(c,c)

ZN Re [Ej(cjfefi”%)} ‘

D, (c, &) > min (2% — azx),
x>x0

with a = 20un (&, ¢, &)+ 20un (€, & ¢). Now, using the
fact that min,>., (2% — ax) is reached at the point x
if 1o > 5, we get

P(Dg(c, ¢) < M)
< P<x% —2z00un (€, ¢, &) — 2xooun (€, & ¢) < M)
+ P(xo < oun(€, ¢ €) + oun(€, ¢, c)))

~ o M
< o > 7
_QP( ’U,N(g,C,C)_ 1 4{1;‘0)

+ 2P<g:20 < oun(§,c, é)),

since uy (€, ¢, &) and uy (€, &, c) have the same distri-
bution. O

Lemma 3. Let gj,éj be independent complex wval-
ued random variables such that their real and imag-
inary parts are independent standard Gaussian vari-
ables, let ¢, s and o be some positive real numbers.

Denote p, = (o \/logﬁ)“‘?%, N, = [CP;I/S] and
B = max, ‘ Zj\izﬁl Re (eij‘ré'jéj) ’
enough,

Then, for o small

—1 o2 4

P(QO’ZBU > c’pi) < 2¢(log o V)Tt gote ~ a1 4N /2,

Proof of Lemma 3. Applying Lemma 2, we state that,
for o small enough,

P (B, > 4ay/N, log(e 7))
< 2c(logo V)T 6% w4 e No/2,
from which follows that

P(Bg > dap; /2% clog(a*l))

< 2c(logo™ ) Tr1 g% T 4 ¢ No/2,

We conclude, observing that 4xp;1/2sw/clog(a—1) =
8xpZ/c |

202

Lemma 4. Let N be some positive integer and let
&, &, = 1,...,N, be independent complex val-
ued random variables such that their real and imag-
inary parts are independent standard Gaussian vari-
ables. Let u = (uy,...,un) be a vector of real num-
bers. Denote S(t) = Zjvzl u; Re (eij%jgj) for every t
in [0,27] and ||S]|oc = sup,ejoon [S(t)|. Then for all
x,y >0,

P ([l > V2o (llulls + ylull))
< (N+ 1)6_“”2/2 +e V2,
Proof of Lemma 4. We refer to Appendix B, Lemma

3, where this lemma was first stated and proved. [

Lemma 5. Let ¢ = (c1,¢2,...) and ¢ = (¢1,0¢,...)
i Fo 1 with s > 0 and let N be an integer. Denoting

nj,7j Y N(0,1), we define

N e ~ i
S(t) _ Z n;j Re(cj —e Jtcj) -+ 75 Im(cj —e ]tcj)
j N ity |2
=t e e — et
for every t in [0,27). Then P(|IS|loo = @) is smaller
than
L-max{1, N}

Vming SN e — e 2

22
2

+1> e

First recall Berman’s formula, that we will need in the
proof.

Theorem 1 (Berman (1988)). Let N be a positive in-
teger, a < b some real numbers and g;, j =1,...,N
be continuously differentiable functions on [a,b] satis-
fying Z;y:1 g;(t)> =1 for allt e R and j € [1,N], and
n5, J =1,..., N, some independent standard Gaussian
variables. Then

N 0o _t2
P( Z (tn; > ;v) < g e_ﬁ —|—/ ¢ dt
su j ; —e 2
[aé}) j=1 PR = T 2m z V2T
1/2

with I:/ab Lilg;(t)ﬂ dt.

Proof of Lemma 5. Denote

- Re(cj—e &)
. t — J J ,
f]( ) \/ZkN:gl [ck—e—iktE |2
gj(t) Im(ijefithj)

\/ZkNgl lck—e—iktE, |2
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We compute that

No

_ )? + g5(t)?)

<

N, .9~
_ 23;1 j3%1e;l? _ (Z,ivjl Im
Zg:ol | — ekt |2
L? max{1, N2725}

" ming 3337 g — eI 2

(kfkékeiikt) ) 2

Zﬁ; lex — e—ikt5k|2

The conclusion follows from Berman’s formula. O

Lemma 6. Let o be a positive real number and s,S in
[s1,52] € R} be such that 0 < s — S < —— g . Denote

2757
py(s) = (02\/10g0‘1) o

o~

then, for o small enough,

RS
*

2 (5) < DT,
5 (s)

Proof of Lemma 6. By the definition of p(s), we have

__2(8—s)
Es+D(ES+D)
log(o—1)) "7,

which, when ¢ is so small that 02+/logo—! < 1, leads,
with the hypothesis on s and .5,

—2
(s +1)2logo—1
log(o—l)) (451+1)% log )

Then, we compute

(02 log(0*1)>m
{ -2

=ex

P (451 + 1)2log ot

1
(2logo + 3 log log 0_1)}

. { 4 a loglogafl)}
= eXx -
P (4s1 +1)? 4logo—!
< e
and this concludes the proof. O

Finally, we recall here Berry-Esseen’s inequality, in a
simpler version than Theorem 5.4 of Petrov (1995).

Theorem 2 (Berry-Esseen’s inequality). Let N be a
positive integer and Xi,..., XN “ X be such that
E(X)=0,Var(X) =+ ,E|X\3 =m? < +o0. Denote
Fy(z) = P(ﬁv ijl X; < x) and ® the distribu-
tion function of the standard Gaussian variable. Then

Am® 1
o(2)| < —
@)l < v VN

sup [Fiy (z) —

for an absolute constant number A. Moreover, in the
case when X has a centered Gaussian distribution, and
using the majoration A < %,

O(z)] <

sup [Fn(z) — SN

References

S. M. Berman (1988). Sojourns and extremes of a
stochastic process defined as a random linear combina-
tion of arbitrary functions. Comm. Statist. Stochastic
Models, vol. 4, n°1, pp. 1-48

V. V. Petrov (1995). Limit theorems of probability
theory. The Clarendon Press Oxford University Press,
vol.4



