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Abstract

We consider the design of proper scoring rules, equivalently proper losses, when the goal is to
elicit some function, known as a property, of the underlying distribution. We provide a full charac-
terization of the class of proper scoring rules when the property is linear as a function of the input
distribution. A key conclusion is that any such scoring rule can be written in the form of a Breg-
man divergence for some convex function. We also apply our results to the design of prediction
market mechanisms, showing a strong equivalence between scoring rules for linear properties and
automated prediction market makers.

1. Introduction

In Machine Learning, we use loss functions as a way to measure the performance of a hypothesis
on a set of data. In another sense, loss functions are a way to incentivize “correctness” in a learning
algorithm. If we consider algorithms which output probability predictions, then we say that a loss is
proper if, given any distribution P on an outcome y, an algorithm (forecaster) minimizes expected
loss by actually reporting P . In the setting of multiclass classification, where our goal is to predict
a distribution P̂ from the n-dimensional probability simplex ∆n, `(P̂ , y) is a proper loss if, given
any P ∈ ∆n, P ∈ arg minP̂ Ey∼P `(P̂ , y).

In the multiclass setting our goal is to incentivize a report of the full distribution of y, but there
are several reasons why we might go further. Indeed, there are any number of scenarios in which
we are given data from some distribution and we would like our forecaster not to report an entire
distribution, which can be computationally impossible anyway, but rather some simpler object – e.g.
a set of summary statistics, or even a data classifier. Formally, given a space of distributions P , we
shall call Γ : P → Rn a property, and Γ(P ) will contain all of the information about P for the task
at hand. As a very pertinent example, if P ∈ P is a distributions on pairs (x, y), with x ∈ Rd and
y ∈ R, then one interesting choice of Γ is the linear regressor w ∈ Rd that minimizes the expected
squared loss (w · x− y)2.
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In the present paper we use the terminology of a scoring rule, terminology drawn from the eco-
nomics literature which, in essence, denotes the same concept as a loss function but in which the
goal is to maximize rather than minimize. A scoring rule s[·](·) is said to be proper for property Γ
if Γ(P ) ∈ arg maxr∈Rd Eω∼P s[r](ω) for every distribution P ; s is strictly proper if Γ(P ) is the
only member of the arg max for every P . A natural question to pose is, given any Γ, under what
conditions can we design a score s that is (strictly) proper for Γ? Moreover, can we provide a full
classification of all such scores? These relatively broad questions were perhaps first proposed by
Lambert et al. (2008).

In the present paper, we provide a fully complete answer to the latter questions for a particular
class of properties, namely those Γ which are linear in the distribution. The central conclusion of
the present paper is that any scoring rule for a linear property Γ must take the form of a Bregman
divergence.

Scoring rules have been studied for some time, but there has been renewed focus on the topic
particularly due to their relationship to the design of prediction markets. A prediction market is
a financial mechanism whose purpose, given some uncertain future outcome, is to aggregate the
subjective probability beliefs of this outcome from a large crowd of individuals. Hanson (2003)
showed how scoring rules can be used in a very simple fashion to construct such markets, and there
has since been much work strengthening this connection. As our results relate quite strongly to
this body of work we shall take a tour through some of the recent literature to emphasize these
connections.

2. Previous Work and a Discussion of Results

Many authors point to the paper of Brier (1950) as the earliest mention of what we now call a proper
scoring rule, or a proper loss. The paper, published in the Monthly Weather Review, observed that
verifying probability forecasts can be tricky and proposed a tool, now known as the Brier score, to
measure predictions once an outcome is known. Twenty years later, in what is widely considered
to be the seminal work on the topic, Leonard Savage published a very general treatise on eliciting
“personal probabilities,” i.e. subjective probability estimates Savage (1971). In its simplest incar-
nation, a proper scoring rule is simply a function S(·; ·) taking two inputs, a probability distribution
forecast P̂ and an outcome x from a finite set, with the property that if x is sampled according to
some “true” distribution P then for any P̂

EP [S(P, x)] ≥ EP [S(P̂ , x)].

In other words, the forecaster maximizes the expected value of S by reporting the true distribu-
tion. One of the most well-known examples is the logarithmic scoring rule defined by S(P, x) :=
logP (x), and it is an easy exercise to see that this satisfies the desired property. Among many useful
observations, Savage makes a point that one can construct a scoring rule using any strictly convex
function. A more modern discussion of the topic can be found in Gneiting and Raftery (2007).
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2.1. Design of Prediction Markets

It was observed by Hanson (2003) that one can use a scoring rule not only to elicit correct forecasts
from a single individual but also to design a prediction market. In such a market, traders would
have the ability to place bets with a central authority, known as a market maker, and the market
maker would continue to publish a joint forecast representing the “consensus hypothesis” of the
distribution. The framework is remarkably simple, and we describe it here. The market maker
publishes a proper scoring rule S and an initial probability estimate P0. On each round t in a
sequence, the current consensus probability Pt is posted, and any trader can place a bet by modifying
the probability to any desired value Pt+1. In the end, the true outcome x is revealed to the world,
each trader receives a (potentially negative) profit of

S(Pt+1, x)− S(Pt, x). (1)

Notice two facts about this framework: (a) if a trader at time t knows the true probability P ∗ then
he always maximizes expected profit by setting Pt+1 = P ∗ and (b) because of the telescoping
sum, if PT is the final estimated probability then the market maker needs only to pay out a total of
S(P0, x) − S(PT , x). Hanson referred to this form of prediction market as a market scoring rule
and, when the log scoring rule from above is used, this was called the Logarithmic Market Scoring
Rule (LMSR).

Hanson’s prediction market framework, which requires traders to make probability estimates and
judges them according to a scoring rule, does not fit into our typical understanding of betting mar-
kets, as well as other financial markets, in which parties buy and sell contracts whose payoff is
contingent on future outcomes. One such type of contract is the Arrow-Debreu security, which pays
off a unit of currency if a given event occurs, or it pays off nil. A question one might ask is whether
we can convert the market scoring rule betting language, in which traders are asked to report prob-
ability predictions, to one in which traders simply purchase bundles of Arrow-Debreu securities at
prices set by the market maker. Indeed, Chen and Pennock (2007) showed that this is possible for a
certain class of market scoring rules and proposed a market formulation based on a “cost function”,
which we sketch here:

• Some future outcome i ∈ {1, . . . , n} will occur, and the market maker sells an Arrow-Debreu
security for each outcome: contract j pays $1 if and only if outcome j occurs. Market maker
has a convex differentiable C : Rn → R and maintains a “quantity vector” q ∈ Rn, where
initially q is set to be the vector of 0’s.

• At any point in time, a trader may purchase a “bundle” of shares described by r ∈ Rn≥0; that
is, ri is the number of shares purchased for outcome i. Given current quantity vector q, the
price for bundle r is C(q + r) − C(q). After selling r to the trader, the market maker then
updates q← q + r.

• At the close of the market, when the outcome i is revealed, the market maker has to make a
payout to all of the winning contracts, which is a total cost of qi.

Notice that the derivative ∇C(q) is essentially the market estimate of the true distribution on the
outcome, since ∇iC(q) is the marginal cost of a tiny purchase of contract i, which in equilibrium
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would be the expected return of the contract; that is, the probability. Indeed, to avoid arbitrage
opportunities the market maker must ensure that ∇C(q) is always a distribution. Chen and Pen-
nock (2007) showed that one can replicate the LMSR by using this cost-function framework, with
C(q) := α−1 log (

∑
i exp(αqi)), for any parameter α > 0.

2.2. Markets for Large Outcome Spaces

An important problem with the prediction market frameworks we have proposed thus far is that they
are not practical for large outcome spaces. Imagine a scenario where the outcome is a combinatorial
object, like the joint outcome of a single-elimination tournament with n teams. In the case of the
market scoring rule, we must ask each participant to submit the entire distribution over the outcome
space according to his belief. In the cost-function framework, the market maker is required to sell an
Arrow-Debreu security for each of the possible outcomes. Clearly neither of these will be feasible
for large n. One natural solution is to consider a small set of marginal probabilities, and to have the
betting language depend only on these values. It has been considered whether a market maker can
efficiently simulate LMSR pricing within this betting language, yet a large number of these results
have been negative Chen et al. (2007, 2008).

Abernethy et al. (2011) proposed a new framework for combinatorial prediction market design
which avoids some of these hardness issues. The idea is best explained by way of example. Imagine
a round-robin tournament which ends up with a ranking of all n teams. Rather than have a single
contract corresponding to each of the n! outcomes, a market maker can sell only

(
n
2

)
contracts, one

for each pair i, j corresponding to the predicate “does team i rank higher than team j?” This is
often called an incomplete market, as the traders can only express beliefs in this lower-dimensional
contract space. Nevertheless, we can still use a cost function C : R(n2) → R to price these contracts
as we did in the complete market setting. The market maker will maintain a quantity vector q ∈
R(n2), and will price a bundle of contracts r ∈ R(n2) according to the rule C(q + r)− C(q). Given
any final ranking of the n teams, we can describe the payoffs of all contracts by some x ∈ {0, 1}(

n
2).

The trader who previously purchased bundle r will receive r · x.

In this setting, how ought we design C? Previously, in the complete market setting, we noted that
∇C should always be a distribution. Abernethy et al. (2011) showed that, in a similar vein, C must
have the property that {∇C(q) : q ∈ R(n2)}must identically be the convex hull of all payout vectors
x over all the n! possible outcomes. If we let H denote this convex hull, then we can construct C
via conjugate duality. Let R be some strictly convex function with domain H , then we can set
C(q) := supz∈H z · q − R(z). It is shown by Abernethy et al. (2011) that this construction is
sufficient to guarantee the desired properties of C.

2.3. Eliciting Expectations using a Bregman Divergence

Staying with the framework of Abernethy et al. (2011) for a moment, let us now consider what is
a trader’s objective. We will assume this trader wants to optimize his profit, and we can imagine
that the trader maintains some belief distribution D on the set of all achievable outcome vectors
x ∈ {0, 1}(

n
2). If the current quantity vector is q, then a trader’s expected profit of a bundle purchase
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r under the presumed distribution D is

Profit(q→ q + r|D) = Ex∼D[r · x− (C(q + r)− C(q))].

With some work, this can be written in terms of Bregman divergence with respect to the conjugate
function R of C:

Profit(q→ q + r|D) = DR(EDx,∇C(q))−DR(EDx,∇C(q + r)), (2)

where we define1 Df (x,y) := f(x) − f(y) − ∇f(y) · (x − y) for any convex function f , and
observe that Df (x,y) ≥ 0 via the convexity assumption. Notice that a profit-maximizing choice of
r will bring ∇C(q + r) to be identically EDx, causing the second divergence term to vanish. It is
then no wonder that the gradient space of C should be identified with the convex hull of the possible
payoffs x.

The profit description in (2) looks quite similar to the market scoring rule profit in (1) – and this
relationship has been discussed in Chen and Vaughan (2010) for the case of complete markets.
Indeed, the connection between Bregman divergences and proper scoring rules goes back to Savage
(1971) who showed that one can design a scoring rule to elicit probability predictions from the
divergence with respect to an arbitrary differentiable convex function (although he did not use the
Bregman terminology). Further discussion can be found in Grünwald and Dawid (2004), Dawid
(2006), Gneiting and Raftery (2007), and Banerjee et al. (2005). While using a somewhat different
terminology, one can find a very thorough treatment in Reid and Williamson (2010) and Vernet et al.
(2011).

2.4. General Elicitation and Our Results

It was perhaps Lambert et al. (2008) who first considered the following general problem: given an
outcome space Ω and an arbitrary map Γ : ∆Ω → R, under what circumstances can we construct a
proper scoring rule s : R× ω → R for Γ, i.e. where

Γ(P ) ∈ arg min
r∈R

Eω∼P [s(r, ω)]

for every P ∈ ∆Ω? In other words, under what circumstances can we construct an incentive-
compatible payment scheme for Γ, so that a forecaster knowing the true distribution P maximizes
expected utility by reporting Γ(P )? Moreover, can we provide a full classification of which func-
tions exhibit this property? Lambert et al. (2008) makes a number of significant contributions to-
wards these goals, although their results are largely focused on scalar properties, that is where Γ is
real valued.

In the present paper we consider vector-valued properties. One of our main contributions is to
give a full and very general characterization of proper scoring rules for the case when Γ is linear
in the distribution – this is equivalent to saying that Γ(P ) is an expectation according to P . We
show that, in a very strong sense, any proper scoring rule s(r, ω) for a linear Γ can be written
identically in terms of some Bregman divergence. A similar result appeared in Banerjee et al.
(2005); our method more closely follows that of Gneiting and Raftery (2007) and hence requires
fewer regularity conditions and is more general.

1. A more precise definition is given later
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3. Definitions

We use Ω to denote the (possibily infinite) set of possible “outcomes” of some future event, and we
let Σ be a sigma algebra over Ω. We let P = ∆|Ω| denote the set of probability measures on (Ω,Σ).
We denote by δω the probability measure placing all weight on ω ∈ Ω.

Following Gneiting and Raftery (2007), we say that a function g : Ω → R is P-integrable if g is
measurable with respect to Σ and integrable with respect to every µ ∈ P . Similarly, a function
g : Ω→ R is P-quasi-integrable if g is measurable with respect to Σ and quasi-integrable (having
possibly infinite but not indeterminate integrals – see Bauer (2001)) with respect to all µ ∈ P . Here
R = R ∪ {−∞,∞} denotes the extended real numbers.

We let U denote the information space, and we shall assume that U ⊆ Rk and that U is convex.
A distributional property will simply be a function Γ : P → U . We will denote the range of Γ by
RΓ ⊆ U . One could think of Γ(µ) for some µ ∈ P to be the “relevant information about µ.” We
will refer to the level set of Γ to mean {µ |Γ(µ) = r} for some r, also denoted Γ−1(r).

Definition 1 Assume we are given a sample space Ω with sigma algebra Σ, a set of distributions
P , and an information space U . A scoring rule is any function s : U → (Ω → R) such that s[r] is
P-quasi-integrable for all r ∈ U . For simplicity, we will write s[r](µ) to denote

∫
Ω s[r] dµ.

Definition 2 We say that a scoring rule s is proper for a property Γ if for all µ ∈ P ,

Γ(µ) ∈ argmin
r∈RΓ

{∫
Ω
s[r] dµ

}
. (3)

If the argmin in (3) is always unique for every µ, then we say s is strictly proper, and that s elicits
Γ. Conversely, a property Γ is elicitable if there is some strictly proper scoring rule s for Γ.

Given any scoring rule s, one can construct a modified scoring rule s′ via a simple rule: for all
r ∈ U, ω ∈ Ω, let s′[r](ω) := s[r](ω) + g(ω), where g : Ω → R is arbitrary. By adding a
term which depends solely on ω (and not r), we have not changed the elicitation property of s, as
argminr∈U s[r](µ) = argminr∈U s

′[r](µ) for all distributions µ. This leads us to the following
definition.

Definition 3 Given a pair of scoring rules s, s′ : U → (Ω → R) and any subset V ⊂ U , we say
that s and s′ are equivalent on V , s ∼=V s′, when there exists a P-integrable function g : Ω → R
such that s[r](ω) = s′[r](ω) + g(ω) for all r ∈ V and all ω ∈ Ω. When V = U , then we simply say
that s and s′ are equivalent and write s ∼= s′.

4. Linear properties

Throughout the paper, we will assume our convex functions to be closed and proper.
Definition 4 Let f : U → R be convex, and let df be a function U → Linear(U), where Linear(U)
is the set of linear operators on U . For convenience, we shall typically write dfr instead of df(r).
Then df is a subderivative of f if for all r, r′ ∈ U we have

f(r′)− f(r) ≥ dfr · (r′ − r). (4)
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Definition 5 The Bregman divergence with respect to a convex function f with subderivative df is
the function

Df,df (x, y) = f(x)− f(y)− dfy · (x− y). (5)

When f is differentiable, and hence there is only one unique subderivative df := ∇f , we will
suppress df and simply write Df (x, y).

We note one crucial property, which is that a Bregman divergence is always nonnegative, and when
f is strictly convex then we have that Df (x, y) = 0 if an only if x = y. We would now like to
take a given Bregman divergence Df,df and construct a scoring rule from it, an object we will call a
Bregman score, following Grünwald and Dawid (2004).

Definition 6 Given any P-integrable function ρ : Ω → U , we can associate a Bregman score
s : U → (Ω → R) to the triple (f, df, ρ), where f : U → R is convex and df is an associated
subderivative, where

s[r](ω) := −Df,df (ρ(ω), r) + f(ρ(ω)) = f(r) + dfr · (ρ(ω)− r) (6)

Note that the term f(ρ(ω)) was chosen to simplify the expression for s, but as observed above, does
not change the elicitation properties: s is equivalent to the score s′[r](ω) = −Df,df (ρ(ω), r). It is
natural to ask what property is elicited by this Bregman score, and we answer this via the following
simple computation.

s[r](µ) =

∫
Ω

(
f(r) + dfr · (ρ(ω)− r)

)
dµ(ω) = f(r) + dfr · (

∫
Ω ρ dµ− r)

= −Df,df

(∫
Ω ρ dµ, r

)
+ f

(∫
Ω ρ dµ

)
. (7)

We have written the expression this way to single out the variable r, which only occurs in the
divergence term. By the observation above about the minima of divergences, it becomes imme-
diately clear that this function is maximized at r =

∫
Ω ρ dµ. Hence, s is proper for the property

Γs(µ) =
∫

Ω ρ dµ. Moreover, f is strictly convex if and only if s is strictly proper.

We have just shown how to construct a Bregman score, as well as describe the property Γ that it
elicits. We shall refer to this property as linear, as the map µ 7→

∫
Ω ρ dµ is linear in the input µ.

As it turns out, given any linear property Γ, we now have a useful tool to design a large family of
scoring rules that elicit Γ. If we set ρ(ω) := Γ(δω) where δω is the distribution with a point mass
on ω, then it is easy to see that Γ(µ) =

∫
Ω ρ dµ via the linearity of Γ.

From the above discussion, we have shown the following Lemma.

Lemma 7 Let s be a (f, df, ρ) Bregman score. Then s is a proper scoring rule for Γ : µ 7→
∫

Ω ρ dµ,
and is strictly proper if and only if f is strictly convex.

The following definition captures a particular notion of differentiability which will be central to our
characterization. It essentially implies smoothness within RΓ, the range of Γ.
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Definition 8 Let s : U → (Ω→ R) be a proper scoring rule for property Γ. Given any r ∈ RΓ and
µ ∈ P , we say that s is Γ-differentiable at (r, µ) if the directional derivative d

dts[r + tv](µ) exists
for all v ∈ Rk such that r + εv ∈ RΓ for sufficiently small ε > 0. If this holds for all µ ∈ Γ−1(r)
and all r ∈ relint(RΓ), the relative interior2 of RΓ, we simply say that s is Γ-differentiable.

Γ-differentiability is a weaker notion than differentiability, and allows for a broader class of scoring
rules. The definition has two features: (a) we restrict our attention to how s behaves only within RΓ

and (b) we require that s[r](µ) is differentiable at a point r = r0 only when r0 = Γ(µ). Put another
way, whenever the scoring rule is minimized, it must be differentiable, within RΓ, at the minimizer.

Why provide such a weak definition of differentiability for scoring rules? It turns out that, for an
arbitrary (non-smooth) convex function f with subderivative df , it is simply not the case that a
(f, df, ρ) Bregman score is differentiable in general. On the other hand, every Bregman score does
satisfy Γ-differentiability.

Lemma 9 Any (f, df, ρ) Bregman score is Γ-differentiable for Γ : µ 7→
∫

Ω ρ dµ.

Proof For any convex f : U → R with subderivative df , and some P-integrable function ρ : Ω→
U , it is clear that the (f, df, ρ) Bregman score elicits the property Γ(µ) :=

∫
Ω ρ dµ. Let us call this

scoring rule s, and we recall from (7) that s[r](µ) = −Df,df

(
Γ(µ), r

)
+ f
(

Γ(µ)
)
. To establish Γ-

differentiability it is sufficient to show that s[r](µ) is differentiable in r at each pair (r, µ) for which
r = Γ(µ). More generally, we will show that the function g(y) := Df,df (x, y) is differentiable at
y = x and, moreover, that∇|y=xg(y) ≡ 0. Going a step further, it suffices to prove this statement in
one dimension, i.e. when U = R. This is because we can check the differentiability of Df,df (x, y)
by checking the differentiability of the scalar function hv(t) := Df,df (x, x + tv), at t = 0, for all
unit vectors v. Of course, hv(t) is simply a divergence on R with respect to the convex function f
and subderivative df when restricted to the set {x+ tv : t ∈ R}.

Let us now look at

lim
ε↓0

Df,df (x, x+ ε)

ε
= lim

ε↓0

f(x)− f(x+ ε)− εdfx+ε

ε
= f ′+(x)− lim

ε↓0
dfx+ε (8)

where f ′+(x) is the right derivative of f . It is clear that f ′−(z) ≤ dfz ≤ f ′+(z) for all z, and we have
from Rockafellar (1997) (Theorem 24.1) that f ′+(x) ≤ f ′+(x + ε) and limε↓0 f

′
+(x + ε) = f ′+(x).

Combining these we see that limε↓0 dfx+ε = f ′+(x). We have now established that the limit in (8)
vanishes. The argument holds for the left derivative as well by symmetry.

Γ-differentiability gives scoring rules for linear properties a lot of structure along level sets of a lin-
ear Γ. In essence, the scoring rule must behave the same way along every level set. This observation
will allow us to write a scoring rule s[r](ω) in terms of r and Γ(δω), which will be crucial in our
main proof.

2. We recall that the relative interior of a convex set S ⊂ Rn is the interior of the set after restricting to the smallest
affine subspace containing S.
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Lemma 10 Let s : U → (Ω → R) be a Γ-differentiable proper scoring rule for a linear property
Γ. Then there exists a function σ : Ω → R such that for all µ1, µ2 ∈ P with Γ(µ1) = Γ(µ2) such
that for all r ∈ relint(RΓ),

s[r](µ1 − µ2) =

∫
Ω
σ d(µ1 − µ2). (9)

Proof Let r̂ = Γ(µ1) = Γ(µ2) and let µd = µ1 − µ2. Note that Γ(µd) = 0 by linearity, and hence
for any µ ∈ P we have Γ(µ + µd) = Γ(µ). Thus, these “level-set differences” µd are independent
of the Γ-value of the level set; in light of this, define D = {µd|Γ(µd) = 0}. Now by assumption, s
is Γ-differentiable at (r̂, µ1) and at (r̂, µ2), so for all appropriate v ∈ Rk we have

d

dt
s[r̂ + tv](µd) =

d

dt
s[r̂ + tv](µ1)− d

dt
s[r̂ + tv](µ2) = 0,

meaning s is Γ-differentiable at (r̂, µd) as well. But as noted above, µd is independent of the Γ
value r̂, and so s is Γ-differentiable at (r, µd) for all r ∈ relint(RΓ) and all µd ∈ D. Moreover, all
defined directional derivatives of s are 0 at any such (r, µd).

We now note that RΓ is a convex set, being the range of a linear function with a convex domain.
Thus, for any r ∈ relint(RΓ), the path p(t) := r̂ + t(r − r̂), satisfies p(t) + εdpdt ∈ relint(RΓ)
for sufficiently small ε > 0, for all 0 ≤ t < 1. Using the observation above, it follows that s is
Γ-differentiable at (p(t), µd) for all 0 ≤ t < 1 and µd ∈ D. We can now integrate along p to obtain

s[r̂](µd) = s[p(0)](µd) = s[p(1)](µd) = s[r](µd)

for all r ∈ relint(RΓ). Now define σ(ω) = s[r̂](ω) to complete the proof.

Theorem 11 Let scoring rule s : U → (Ω→ R) be given. If s is Γ-differentiable and proper for a
linear property Γ, then s is equivalent to some (f, df, ρ) Bregman score on relint(RΓ).

Proof We of course take ρ such that Γ(µ) =
∫

Ω ρ dµ for all µ ∈ P . Note that Γ may be defined on
finite linear combinations of P by

Γ

(
N∑
i

αiµi

)
=

∫
Ω
ρ d

(
N∑
i

αiµi

)
=

N∑
i

αi

∫
Ω
ρ dµi. (10)

We will denote the space of these linear combinations by span(P).

We now define a linear inverse µ̂ of Γ whose range lies in span(P). Choose a basisB = {b1, . . . , bk}
ofRΓ and for all i choose µi ∈ Γ−1(bi). Now define µ̂ : RΓ → span(P) by µ̂ [

∑
i αibi] =

∑
i αiµi.

By linearity of Γ then, for all r ∈ RΓ we have

Γ(µ̂[r]) = Γ

(∑
i

αiµ̂[bi]

)
=
∑
i

αiΓ (µ̂[bi]) =
∑
i

αibi = r.
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Now let M be a change of basis matrix from the standard basis {ei}i∈[d] to B. Let v[r] ∈ Rk be the
vector with v[r]i = s[r] (µ̂ [bi]), and define dfr = v[r]>M . Then for r′ =

∑
i α
′
ibi, we have

dfr · r′ = v[r]>Mr′ =
∑
i

α′is[r] (µ̂ [bi]) = s[r]

(
µ̂

[∑
i

α′ibi

])
= s[r]

(
µ̂
[
r′
])
. (11)

Now define f : RΓ → R by f(r) = dfr · r. Using (11) and the fact that s is proper for Γ, we can
show that df is a subderivative of f :

f(r) + dfr · (r′ − r) = dfr · r + dfr · (r′ − r) = dfr · r′

= s[r]
(
µ̂
[
r′
])
≤ s[r′]

(
µ̂
[
r′
])

= f(r′),

for all r′, r ∈ RΓ. Thus, f is convex, and we can consider a (f, df, ρ) Bregman score s′:

s′[r](ω) = f(r) + dfr · (ρ(ω)− r) = dfr · ρ(ω) = s[r] (µ̂ [ρ(ω)]) .

Now by Lemma 10 there exists a function σ such that

s[r](δω − µ̂[ρ(ω)]) = σ(ω)−
∫

Ω
σdµ̂[ρ(ω)],

for all ω ∈ Ω and all r ∈ relint(RΓ). Thus,

s[r](ω)− s′[r](ω) = s[r](ω)− s[r] (µ̂ [ρ(ω)]) = σ(ω)−
∫

Ω
σdµ̂[ρ(ω)],

which is a function of ω alone and hence s is equivalent to the Bregman score s′.

We have now characterized how a scoring rule s for a linear property Γ can behave on relint(RΓ), but
what if an elicitation falls out of this range? The only requirement of s is that such “inadmissible”
values not be maxima for any distribution µ. Formally, for any r /∈ RΓ, we must have

s[r](µ) ≤ s[Γ(µ)](µ) (12)

for all µ ∈ P , with a strict inequality if s is to be strictly proper. Note that the right-hand side
of (12) does not depend on r. Letting F (µ) = s[Γ(µ)](µ), the analog of our generalized entropy
function on the probability space P , we can express our condition (12) quite simply: s[r] must be a
subderivative of F , or a strict subderivative if s is to be strictly proper. We now have the following
result, which summarizes our work on linear properties.

Theorem 12 Let scoring rule s : U → (Ω→ R) and linear property Γ : µ 7→
∫

Ω ρdµ be given, and
define F (µ) = s[Γ(µ)](µ). Then s is Γ-differentiable and proper for Γ if and only if s is equivalent
to a (f, df, ρ) Bregman score on relint(RΓ) and s[r] is a subderivative of F for all r /∈ RΓ.

Moreover, s is strictly proper if and only if f is strictly convex and s[r] is a strict subderivative of F
for all r /∈ RΓ.
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5. Bregman Scores, Prediction Markets, and Learning Mechanisms

Let us recall the market scoring rule concept mentioned in Section 2.1. Once we have a scoring rule
S(P, i) for eliciting full probability distributions P ∈ ∆n, Hanson observed that we can construct
a prediction market for forecasting the true outcome i. The market maker simply needs to propose
an inital estimate P0 and let traders propose a series of “modifications” to this hypothesis. A trader
that proposes Pt → Pt+1, where Pt, Pt+1 ∈ ∆n, earns as profit S(Pt+1, i)−S(Pt, i) when the true
outcome i is revealed.

Drawing from Hanson’s market scoring rule, which created a financial mechanism to learn prob-
ability distributions “from the crowd,” Abernethy and Frongillo (2011) proposed taking this idea
further, to learn from more complex classes of hypothesis spaces. Their mechanism, called a
Crowdsourced Learning Mechanism (CLM), may be described as follows. The mechanism orga-
nizers choose a hypothesis space H, and outcome space O, and a measure of relative performance
Profit : H × H × O → R. The organizers post an initial public hypothesis w0 ∈ H, after
which participants propose updates wt 7→ wt+1 to the posted hypothesis, one at a time. The mech-
anism terminates by releasing a final outcome X ∈ O, at which point the participants are paid
Profit(wt,wt+1;X) for each update wt 7→ wt+1 they were responsible for.

Of course, the task of choosing this Profit function is of crucial importance. The authors of Aber-
nethy and Frongillo (2011) consider machine learning problems which aim to minimize some loss
function L : H×O → R, whereH is some arbitrary hypothesis space, andO is the test data space.
If a data pointX ∈ O is drawn according to some true distribution P ∈ ∆O, then we hope to obtain
a hypothesis in argminw∈H EX∼P [L(w;X)]. Thus, to incentivize CLM participants to minimize
this loss, we may simply choose

Profit(wt,wt+1;X) ∝ L(wt;X)− L(wt+1;X). (13)

This gives a crowdsourcing mechanism in the same vein of Hanson’s market scoring rule. We
will refer to this particular CLM, with Profit defined as the drop in a loss function L, as the
L-incentivized CLM.

In Section 2 we also discussed the notion of “share-based” markets, which use securities whose
payout is dependent on some outcome X ∈ O. In this setting, traders purchase share bundles r
for a price of C(q + r) − C(q), where q is the current quantity vector. The payoff of these shares
is determined by a function ρ : O → R, where ρ(X)i is the payout of 1 share of security i when
X ∈ O occurs. We will call such mechanisms Automated Prediction Market Makers (APMM).

Viewing these shares purchases as moving the current quantity vector q 7→ q + r, and letting H
denote the space of possible quantity vectors, it is clear that APMMs are just special cases of CLMs
with Profit(q,q′;X) = C(q′) − C(q) + ρ(X) · (q′ − q). Moreover, equation (2) implies that
any APMM (H,O, ρ, C) is an L-incentivized CLM, where L(q;X) = DR(ρ(X),∇C(q)). This
loss function looks like a Bregman score; to make a more formal statement, we will need a notion
of equivalence between CLMs.

Definition 13 We say that CLMA = (HA,O, ProfitA) reduces to CLMB = (HB,O, ProfitB)
if there exists a map ϕ : HA → HB such that for each bet w1 7→ w2 ∈ (HA 7→ HA), we have

ProfitA(w1,w2;X) = ProfitB(ϕ(w1), ϕ(w2);X). (14)
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If in addition B reduces to A, we say A and B are equivalent.

The central result of Abernethy and Frongillo (2011) is a strong connection between APMMs and
L-incentivized CLMs for loss functions L based on a Bregman divergence. To relate these loss
functions to our Bregman scores, we extend our definition slightly: for f differentiable let a (f, ρ, ψ)
Bregman score be defined by s[r](ω) = −Df (ρ(ω), ψ(r)). Now using our notion of equivalence
we can restate their results as follows.

Theorem 14 (Abernethy and Frongillo (2011)) LetH,H′ be hypothesis spaces withH′ = relint(H′),
and let ψ : H → H′ such that ρ(O) ⊆ ψ(H). Then APMM (H,O, ρ, C) is equivalent to an L-
incentivized CLM for some differentiable C if and only if s[w](X) = −L(w;X) is a (f, ρ, ψ)
Bregman score for some differentiable f .

Combining this result with that of Section 4, we have the following.

Theorem 15 Let H,H′, ψ, ρ be as in Theorem 14, and let ψ−1 be a right inverse of ψ. Then the
following are equivalent:

1. APMM (H,O, ρ, C) is equivalent to an L-incentivized CLM for some differentiable C

2. s[w](X) = −L(w;X) is a (f, ρ, ψ) Bregman score for some differentiable f

3. Scoring rule s[r](X) = −L(ψ−1(r);X) is proper for linear property Γ : P 7→ EX∼P ρ(X)
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