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Abstract

The task of a neural associative memory is
to retrieve a set of previously memorized pat-
terns from their noisy versions by using a net-
work of neurons. Hence, an ideal network
should be able to 1) gradually learn a set of
patterns, 2) retrieve the correct pattern from
noisy queries and 3) maximize the number
of memorized patterns while maintaining the
reliability in responding to queries. We show
that by considering the inherent redundancy
in the memorized patterns, one can obtain
all the mentioned properties at once. This
is in sharp contrast with previous work that
could only improve one or two aspects at the
expense of the others. More specifically, we
devise an iterative algorithm that learns the
redundancy among the patterns. The result-
ing network has a retrieval capacity that is
exponential in the size of the network. Lastly,
by considering the local structures of the net-
work, the asymptotic error correction perfor-
mance can be made linear in the size of the
network.

1. Introduction

The ability to memorize a large set of patterns and reli-
ably retrieve them in the presence of noise, are among
the main reasons that attracted a large body of re-
search on neural networks for the past three decades.
Ideally, a perfect neural associative memory should be
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able to learn patterns, have a large pattern retrieval
capacity and be noise-tolerant. This problem, called
”associative memory”, is in spirit very similar to reli-
able information transmission faced in communication
systems where the goal is to efficiently decode a set of
transmitted patterns over a noisy channel.

Despite this similarity and common methods deployed
in both fields (e.g., graphical models, iterative algo-
rithms, to name a few), there is a huge gap between
the efficiency achieved by them. More specifically,
by deploying modern coding techniques, it was shown
that the number of reliably transmitted patterns over
a noisy channel can be made exponential in n, the
length of the patterns. This was achieved by intelli-
gently imposing redundancy among transmitted pat-
terns. In contrast, the maximum number of patterns
that can be reliably memorized by most current neu-
ral networks scales linearly in the size of the network.
This is due to the common assumption that a neu-
ral network should be able to memorize any subset of
patterns drawn randomly from the set of all possible
vectors of length n (see, for example, (Hopfield, 1982),
(Venkatesh & Psaltis, 1989), (Jankowski et al., 1996),
(Muezzinoglu et al., 2003)).

Recently, (Kumar et al., 2011) suggested a new for-
mulation of the problem where only a suitable set of
patterns was considered for storing. To enforce the
set of constraints, they formed a bipartite graph (as
opposed to a complete graph considered in the ear-
lier work) where one layer feeds the patterns to the
network and the other takes into account the inher-
ent structure. The role of bipartite graph is indeed
similar to the Tanner graphs used in modern coding
techniques (Tanner). Using this model, (Kumar et al.,
2011) provided evidence that the resulting network can
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potentially memorize a substantial number of patterns
at the expense of correcting only a single error during
the recall phase. Later, (Salavati & Karbasi, 2012) fur-
ther improved this result by introducing a multi-layer
structure that can correct a constant number of errors.

In this work, we introduce a novel neural architecture
equipped with an online learning algorithm. This ar-
chitecture can correct a linear fraction of errors while
keeping the storage capacity exponential in the size of
the network. This is achieved by memorizing a set of
patterns with some degrees of redundancy, i.e., those
with very weak minor components. In other words,
we find dual vectors that are (almost) orthogonal to
particular parts of input patterns. By making use of
this inherent redundancy, we can increase the num-
ber of memorized patterns from linear to exponential.
Our learning algorithm is an extension of the subspace
learning method proposed by (Oja & Kohonen, 1988),
with an additional property to make the learned vec-
tors sparse. The sparsity property will become helpful
during the noise-elimination phase.

We will provide theoretical analysis to support our
claims and also assess the accuracy of our results
through simulations. We evaluate the performance
of our proposed algorithms over synthetic datasets,
and compare them with prior art. We also investi-
gate the effect of different hyper-parameters on the
performance of the proposed method.

2. Related Work

Arguably, the Hopfield network is the first auto-
associative neural mechanism capable of learning a set
of patterns and recalling them later (Hopfield, 1982).
By utilizing the Hebbian learning rule, Hopfield con-
sidered a neural network of size n with binary state
neurons. It was shown by McEliece et al. (1987) that
the capacity of a Hopfield network with n nodes is
bounded by C = (n/2 log(n)).

With the hope of increasing the capacity of the Hop-
field network, an extension of associative memories to
non-binary states has also been explored in the past.
In particular, Jankowski et al. (1996) investigated a
complex-valued neural associative memory where each
neuron can be assigned to a multivalued state from the
set of complex numbers. It was shown by Muezzinoglu
et al. (2003) that the capacity of such networks can be
increased to C = n at the cost of a prohibitively com-
plex weight computation mechanism.

Recently, in order to increase the capacity and robust-
ness, a line of work considered exploiting the inher-
ent structure of the patterns. This is done by either

making use of the correlations among the pattern or
memorizing only those patterns that have some sort of
redundancy. Note that this line of work differs from
previous methods in one important aspect: not any
possible set of patterns is considered for learning. By
utilizing neural cliques, (Gripon & Berrou, 2011) were
among the first who demonstrated that considerable
improvements in the pattern retrieval capacity of Hop-
field networks is possible, albeit still not passing the
polynomial bound on the capacity, i.e. C = O(n2).

By deploying higher order neural models, rather than
pairwise correlation considered in Hopfield networks,
(Peretto & Niez, 1986) showed that the storage ca-
pacity can be improved to C = O(np−2), where p is
the degree of correlation. In such models, the state
of the neurons not only depends on the state of their
neighbors, but also on the correlations among them.
However, the main drawback of this work lies in the
prohibitive computational complexity of the learning
phase. To address this difficulty, while being able to
capture higher-order correlations, a new model based
on bipartite graphs was introduced by (Kumar et al.,
2011), and was further explored by (Salavati & Kar-
basi, 2012). Under the restrictive assumptions that the
bipartite graph is fully known, sparse, and expander,
the proposed algorithm by (Kumar et al., 2011) in-
creased the pattern retrieval capacity to C = O(an),
for some a > 1. The lack of a learning algorithm that
satisfies all the mentioned requirements are among the
reasons that limits the capabilities of this model.

In this paper, we propose a novel architecture to cap-
ture the internal redundancy by dividing the input pat-
terns into overlapping clusters/patches. We first de-
vise an online learning algorithm that effectively learns
the structure of the bipartite graph and show that the
capacity of the resulting network is exponential in its
size. We then propose a novel error correction algo-
rithm that corrects a linear fraction of errors in the re-
call phase. Our analytical results, supported by simu-
lations, demonstrate that introducing overlaps among
clusters improves the error correction performance sig-
nificantly.

It is worth mentioning that learning a set of input pat-
terns with robustness against noise is not just the focus
of neural associative memory. For instance, (Vincent
et al., 2008) proposed an interesting approach to ex-
tract robust features in autoencoders. Their approach
is based on artificially introducing noise during the
learning phase and let the network learn the mapping
between the corrupted input and the correct version.
This way, they shift the burden from the recall phase to
the learning phase. We, on the other hand, consider a
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more particular form of redundancy and enforce a suit-
able structure which helps us design algorithms that
are faster and guaranteed to correct a linear fraction
of noise without previously being exposed to.

We should also mention that learning linear con-
straints by a neural network is hardly a new topic.
It is shown by (Xu et al., 1991) and (Oja & Kohonen,
1988) that one can learn a matrix orthogonal to a set
of patterns in the training set by using simple neu-
ral learning rules. However, to our knowledge, finding
such a matrix subject to sparsity has not been ad-
dressed before.

Deep Belief Networks: Our neural architecture
is in some aspects similar to those of Convolutional
(Deep) Belief Networks. Deep Belief Networks (DBNs)
are typically used to extract/classify features by means
of several consecutive stages (e.g., pooling, rectifica-
tion, etc). Having multiple stages help the network to
learn more interesting and complex features. An im-
portant class of DBNs are convolutional DBNs where
the input layer (or the receptive field) is divided into
multiple possibly overlapping patches, and the net-
work extract features from each patch (Jarrett et al.,
2009).

Since we divide the input patterns into a few overlap-
ping smaller clusters, our model is similar to that of
convolutional DBNs. Furthermore, we also learn mul-
tiple features (i.e., dual vectors) from each patch where
the feature extractions differ over different patches.
This is indeed very similar to (Le et al., 2010).

In contrast to convolutional DBNs, the focus of this
work is not classification but rather recognition of the
exact patterns from their noisy versions. Moreover, in
most DBNs, we not only have to find the proper dic-
tionary for classification, but we also need to calculate
the features for each input pattern. This alone in-
creases the complexity of the whole system, especially
if denoising is part of the objective. In our model,
however, the dictionary is defined in terms of dual
vectors. Consequently, previously memorized patterns
are computationally easy to recognize as they yield
the all-zero vector in the output of the feature extrac-
tion stage. In other words, a non-zero output can only
happen if the input pattern is noisy. Another advan-
tage of our model over DBNs is a much faster learning
phase. More precisely, by using a single overlapping
layer in our model the information diffuses gradually in
the network. The same criterion is achieved in DBNs
(Socher et al., 2011) by constructing several stages.

3. Notation and Definitions

In neural associative memories - the subject of this
work - the goal is to design a neural network capable
of memorizing a large set of patterns from a data set X
(learning phase), and recalling them later in presence
of noise (recall phase).

Learning phase: Each pattern x = (x1, x2, . . . , xn)
is a vector of length n, where xi < S = {0, . . . , S − 1}
for i ∈ [n] and some integer S. In this work, our focus
is on memorizing patterns with strong local correla-
tion among the entries. More specifically, we divide
the entries of each pattern x into L overlapping sub-
patterns of lengths n1, . . . , nL, so that

∑
ni ≥ n. Note

that due to overlaps, a pattern node can be a member
of multiple sub-patterns, as shown in Figure 1. We de-

note the i-th sub-pattern by x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
ni ).

To enforce local correlations, we assume that the sub-
patterns x(i) form a subspace of dimension ki < ni.
This is done by imposing linear constraints on each
cluster. These linear constraints are captured in the
form of dual vectors as follows. In the learning phase,
we would like to memorize these patterns by finding

a set of non-zero vectors w
(i)
1 , w

(i)
2 , . . . , w

(i)
mi that are

orthogonal to the set of sub-patterns x(i), i.e.,

y
(i)
j = (w

(i)
j )> · x(i) = 0, ∀j ∈ [mi]∀i ∈ [L], (1)

where [q] denotes the set {1, 2, · · · , q}. The weight

matrix W (i) = [w
(i)
1 |w

(i)
2 | . . . |w

(i)
mi ]
> of cluster i is

created by putting all the dual vectors next to each
other. Equation (1) can be written equivalently as
W (i) · x(i) = 0. Therefore, the goal is to devise a
low complexity algorithm that updates the weights of
W (i)’s (for i ∈ [L]) once it encounters a new pattern
x ∈ X . We should stress here that contrary to our it-
erative algorithm, many proposed learning algorithms
in the literature can learn a set of patterns only af-
ter the whole set is presented to the neural network.
Consequently, they are usually unable to learn a new
set of patterns. Removing this restriction is one of the
major contributions of our work.

One can easily map the local constraints imposed by
the W (i)’s into a global constraint by introducing a
global weight matrix W of size m × n. The first m1

rows of the matrix W correspond to the constraints in
the first cluster, rows m1 + 1 to m1 + m2 correspond
to the constraints in the second cluster, and so forth.
Hence, by inserting zero entries at proper positions, we
can construct the global constraint matrix W . We will
use both the local and global connectivity matrices to
eliminate noise in the recall phase.

Recall phase: Once the set of patterns X has been



Iterative Learning and Denoising in Convolutional Neural Associative Memories

y1 y2 y3 y4 y5 y6 y7 y8

 G(1)  G(2)  G(3)

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4

Figure 1: Bipartite graph G.

memorized, a desirable neural network should be able
to retrieve an already memorized pattern from its cor-
rupted version (of course, if the intensity of noise is
not moderate, there is no hope for recovery). Needless
to say, the recall process should be implementable by
simple operations mentioned earlier.

In the recall phase a noisy version, say y, of an al-
ready learned pattern x ∈ X is given. Here, we as-
sume that the noise is an additive vector of size n,
denoted by e, whose entries assume values indepen-
dently from {−1, 0,+1} with corresponding probabil-
ities p−1 = p+1 = pe/2 and p0 = 1 − pe.1 To ensure
that the amount of noise is moderate, we also need to
assume that the error probability, pe, is less than p0.
We denote by e(i), the realization of noise on the sub-
pattern x(i). In formula, y = x+ e (modulo S). Note
that W · y = W · e and W (i) · y(i) = W (i) · e(i). There-
fore, the goal will be to remove the noise e and obtain
the desired pattern x as the true states of the pattern
neurons. This task will be accomplished by exploiting
the fact that we have chosen the set of patterns X to
satisfy the set of constraints W (i) · x(i) = 0.

Capacity: The last issue we look at in this work is
the retrieval capacity C of our proposed method. For-
mally, the retrieval capacity is defined in terms of the
maximum number of patterns that a neural network
can learn and distinguish later. By construction, we
show that the retrieval capacity of our network is ex-
ponential in the size of the network.

4. The Learning Algorithm

In this section, we discuss the learning algorithm for
a given cluster `. The case of other clusters will
be a straightforward extension of the suggested algo-
rithm. Since the patterns lie in a subspace of dimen-
sion k` ≤ n`, we adapt the algorithm proposed in (Oja
& Karhunen, 1985) and (Xu et al., 1991) to learn the
dual space of the subspace defined by the patterns.
Due to requirements of the denoising algorithm used
in the recall phase, we also need the dual vectors to

1The rationale behind this noise model is to capture the
event of neurons mis-fire a spike (+1 noise) or miss one (−1
noise).

be sparse. To this end, we add an additional term
to penalize non-sparse solutions during the learning
phase. Furthermore, we are not looking for an orthog-
onal basis as in (Xu et al., 1991). Instead, we would
like to find m` vectors that are orthogonal to the pat-
terns. The problem is to find a constraint vector w(`)

is given by

min
w(`)

∑
x(`)⊂x∈X

|(x(`))>·w(`)|2+βg(w(`)), s.t. ‖w(`)‖2 = 1.

(2)
In the above problem, x ∈ X is a pattern drawn from
the training set, β is a positive constant and g(.) is the
penalty term to favor sparse results. For instance one
can pick g(w(`)) = ‖w(`)‖1, which leads to the `1-norm
penalty, widely used in compressed sensing (Donoho,
2006), (Candès & Tao, 2006). In this paper, however,
we find it more appropriate to consider

g(w(`)) =

n∑
i=1

tanh(σ(w
(`)
i )2).

Intuitively, for large σ, tanh(σ(w
(`)
i )2) approximates

|sign(w
(`)
i )|. Therefore, the larger σ gets, the closer

g(w(`)) will be to ‖·‖0. By calculating the derivative of
the objective function, and by considering the update
required for each randomly picked pattern x, we will
obtain the following iterative algorithm:

y(`)(t) = x(`)(t) · w(`)(t), (3)

w̃(`)(t+ 1) = w(`)(t)

− αt

(
2y(`)(t)x(`)(t) + βΓ(w(`)(t))

)
,(4)

w(`)(t+ 1) =
w̃(`)(t+ 1)

‖w̃(`)(t+ 1)‖2
. (5)

where t is the iteration number, x(`)(t) is the subpat-
tern of a pattern x(t) drawn at iteration t, αt is a
small positive constant and Γ(w(`)) = ∇g(w(`)) is the
gradient of the penalty term. This function has the
interesting property that it suppresses very small val-

ues of w
(`)
i (t). To see why, consider the i-th entry of

Γ(w(`)(t))), namely,

Γi(w
(`)(t)) = ∂g(w(`)(t))/∂w

(`)
i (t)

= 2σtw
(`)
i (t)(1− tanh2(σw

(`)
i (t)2)).

It is easy to see that Γi(w(t)) ' 2σwi(t) for relatively
small values of wi(t), and Γi(w

(`)(t)) ' 0 for larger

values of w
(`)
i (t). Thus, for proper choices of β and

σ, Eq (4) suppresses small entries of w(`)(t) towards
zero and favors sparser results. To simplify the analy-
sis, with some abuse of notation, we approximate the
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Algorithm 1 Iterative Learning

Input: Dataset X with |X | = C, stopping point ε.
Output: w(`)

1: while
∑

x∈X |(x(`))> · w(`)(t)|2 > ε do
2: Choose pattern x(t) uniformly at from X .
3: Compute y(`)(t) = (x(`)(t))> · w(t).
4: Update w(`)(t) according to Eq (8).
5: t← t+ 1.
6: end while

function Γ(w(`)(t)) with the following function:

Γi(w
(`)(t)) =

{
w

(`)
i (t) if |w(`)

i (t)| ≤ θt;
0 otherwise.

(6)

Here θt is a small positive threshold.

Following the same approach as in (Oja & Karhunen,
1985) we assume αt to be small enough such that
Eq (5) can be expanded as powers of αt. This leads to
a simpler version of equations (3-5) as follows.

y(`)(t) = x(`)(t) · w(`)(t), (7)

w(`)(t+ 1) = w(`)(t)− αt(y
(`)(t)(x(`)(t)

− y(`)(t)w(`)(t)

‖w(`)(t)‖22
) + βΓ(w(`)(t))). (8)

In the above approximation, we also omitted the term
αtβ

(
w(`)(t) · Γ(w(`)(t))

)
w(`)(t) since the contribution

of w(`)(t) · Γ(w(`)(t)) is negligible.

The resulting learning algorithm for one constraint
node is shown in Algorithm 1. In words, y(`)(t) is the
projection of x(`)(t) onto w(`)(t). If for a given data
vector x(`)(t), the projection y(`)(t) is non-zero, then
the weight vector will be updated in order to reduce
this projection.

To prove the convergence of Algorithm 1, we bene-
fit from the convergence of Stochastic Gradient De-
scent (SGD) algorithms (Bottou, 1998). Let E(w(`)) =∑

x∈X |x(`) · w(`)|2 denote the cost function. Further-

more, let Ax = x(`)(x(`))>, and A = E{Ax|x ∈ X}
represent the correlation among patterns in the train-
ing set X . Since patterns are uniformly sampled from
X , one can rewrite E(w(`)) = (w(`))>Aw(`)/C.

Theorem 1 Under the following regularity conditions

• [A1.] ‖A‖2 ≤ Υ <∞,

• [A2.] supx∈X ‖Ax‖2 ≤ ζ <∞,

• [A3.] αt ≥ 0,
∑
αt =∞,

• [A4.]
∑
α2
t <∞,

v(1) v(2) v(3)

x1 x2 x3 x4 x5 x6 x7 x8

Figure 2: Contraction graph G̃ corresponding to graph
G in Figure 1.

• [A5.] at each iteration t, 2αtβ < 1,

Algorithm 1 converges to a local minimum ŵ(`) for
which ∇E(ŵ(`)) = 0. Furthermore, at this local mini-
mum, the vector ŵ(`) is orthogonal to all the patterns
of the training set, i.e. Aŵ(`) = 0.

The proof uses the results of (Bottou, 1998) to show
the convergence to a local minimum proving that the
weight vector at this local minimum is orthogonal to
the patterns of the training set. Furthermore, condi-
tion A5 ensures that Algorithm 1 does not converge to
the trivial solution ŵ(`) = 0. The full proof could be
found in the supplementary materials.

In order to find m` constraints required by the learn-
ing phase, we need to run Algorithm 1 several times.
In practice, we can perform this process in parallel, to
speed up the learning phase. It is also more meaning-
ful from a biological point of view, as each constraint
neuron can act independently from the others. Al-
though running Algorithm 1 in parallel may result in
redundant constraints, our experimental results show
that by starting from different random initial points,
the algorithm converges to linearly independent con-
straints.

5. Recall Phase

The recall phase of our proposed method consists of
two parts, intra-module and inter-module. In the
intra-module part, each cluster tries to remove noise
from its sub-pattern. As we will show in Section 5.1,
this is indeed possible if the sub-patterns experience a
single error. In case of successful decoding, the pat-
tern neurons keep their states and revert back to their
original states otherwise. During the inter-module de-
coding, once the correction in cluster ` finishes, clus-
ter ` + 1 starts and this process continues in several
rounds. Here, the overlapping structure of the clusters
helps them correct a linear fraction of errors together.

5.1. Intra-Module Recall Algorithm

In the intra-module part, we exploit the fact that the
connectivity matrix of the neural network in each clus-
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ter is sparse and orthogonal to the memorized pat-
terns. For a cluster `, let x(`) + e(`) be the given noisy
input pattern. Recall that W (`)(x(`)+e(`)) = W (`)e(`).

Algorithm 2 performs a series of forward and back-
ward iterations to remove e(`). At each iteration, the
pattern neurons decide locally whether to update their
current state or not: if the amount of feedback received
by a pattern neuron exceeds a threshold, the neuron
updates its state, and remains intact, otherwise.2

Theorem 2 Algorithm 2 corrects at least a single
error of cluster G(`) with probability at least 1 −(

d(`)
avg

m

)d
(`)
min

as ϕ→ 1, where d
(`)
avg and d

(`)
min are the av-

erage and minimum pattern-node degrees, respectively.

The proof can be found in the supplementary mate-
rial. In short, we bound the probability of correcting
a single error, Pc1 , in terms of the probability that two
nodes share the same neighborhood in a cluster.

Theorem 2 implies that to have one error corrected
with high probability, we have to make sure to have
small average and large minimum degrees among the
pattern nodes. To simplify the analysis of Section 5.2,
we make a conservative assumption that a cluster is
capable of correcting only a single error with over-
whelming probability, and declares failure in case of
multiple errors. In practice, as it is confirmed by our
simulations, clusters are able to correct more than one
error.
As stated earlier, the efficiency of Algorithm 2 relies
on the assumption that the neural network is sparse.
To gain some insight, consider an extreme case where
the bipartite graph is complete. Then, a single er-
ror results in the violation of all constraint neurons in
the forward iteration. Therefore, in the backward it-
eration, all the pattern neurons receive feedback from
their neighbors. This makes it impossible to tell which
pattern neuron is the noisy one. On the other hand,
once the graph is sparse, a single error makes only
a small set of constraint neurons unsatisfied. Con-
sequently, in the backward iteration, only the pattern
nodes that share the same neighborhood with the noisy
one receive feedback. Note that in this case, the frac-
tion of the received feedback will be much larger for
the true noisy neuron. Therefore, by merely looking at
the fraction of received feedback from the constraint
neurons, one can identify the noisy pattern neuron.

2In order to maintain the current value of a neuron, we
can add self-loops to pattern neurons in Figure 1 (the self-
loops are not shown in the figure for the sake of clarity).

Algorithm 2 Intra-Module Error Correction

Input: Training set X , threshold ϕ, iteration tmax

Output: x
(`)
1 , x

(`)
2 , . . . , x

(`)
n`

1: for t = 1→ tmax do
2: Forward iteration: Calculate the weighted input

sum h
(`)
i =

∑n`

j=1W
(`)
ij x

(`)
j , for each neuron y

(`)
i

and set y
(`)
i = sign(h

(`)
i ).

3: Backward iteration: Each neuron x
(`)
j computes

g
(`)
j =

∑m`

i=1W
(`)
ij y

(`)
i∑m`

i=1 |W
(`)
ij |

.

4: Update the state of each pattern neuron j ac-
cording to

x
(`)
j = x

(`)
j + sign(g

(`)
j )

only if |g(`)j | > ϕ.
5: t← t+ 1
6: end for

5.2. Inter-Module Recall Algorithm

In the previous section, we showed that a single error
inside a cluster can be corrected with high probabil-
ity. In fact, a finer analysis reveals that there exists a
threshold Te > 1 such that any number of errors less
than Te can be corrected. Since clusters have overlaps
with one another, removing an error from a cluster,
can potentially help the others.

Our proposed algorithm is based on a famous error cor-
rection decoder called peeling algorithm (Luby et al.,
2001). To begin, we consider the contracted graph G̃
in which for each cluster G(`), we contract its set of

constraint nodes y
(`)
1 , . . . , y

(`)
m` into a single node v(`)

(see Figure 2). The contraction graph G̃ is closely re-
lated to recursive autoencoders introduced in (Socher
et al., 2011). Let us denote the degree distributions

of G̃ (from the edge perspective) by λ̃ and ρ̃. We say
that the node v(`) is unsatisfied if it is connected to a
noisy pattern node.

The asymptotic performance of our error recovery
method, shown in Algorithm 3, is given by the fol-
lowing theorem.

Theorem 3 Under the assumptions that graph G̃
grows large and it is chosen randomly with degree dis-
tributions given by λ̃ and ρ̃, Algorithm 3 is successful
if pe · λ̃(1− ρ̃(1− z)) < z for z ∈ (0, pe).

The proof is based on the paper (Luby et al., 2001),
detailed in the Supplementary Materials.
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Algorithm 3 Sequential Peeling Algorithm

Input: G̃,G(1), G(2), . . . , G(L).
Output: x1, x2, . . . , xn
1: while there is an unsatisfied v(`) do
2: for ` = 1→ L do
3: If v(`) is unsatisfied, apply Algorithm 2 to

cluster G(l).
4: If v(`) remained unsatisfied, revert the state

of pattern neurons connected to v(`) to their
initial state. Otherwise, keep their current
states.

5: end for
6: end while
7: Declare x1, x2, . . . , xn if all v(`)’s are satisfied.

Otherwise, declare failure.

The condition given in Theorem 3 can be used to cal-
culate the maximal fraction of errors Algorithm 3 can
correct for the given degree distributions. For instance,
for the the degree distribution pair (λ̃(z) = z2, ρ̃(z) =
z5), the threshold is pe ≈ 0.429, below which Algo-
rithm 3 corrects all the errors with high probability.
Note that the predicted threshold by Theorem 3 is
based on the assumption that a cluster can only cor-
rect a single error. In practice, as we noted earlier,
a cluster can correct more. Hence, the threshold pre-
dicted by Theorem 3 is a lower bound on the overall
recall performance of our neural network (as the size
of the network grows).

6. Pattern Retrieval Capacity

We first note that the number of patterns C does not
have any effect on the learning or recall algorithm ex-
cept for its obvious influence on the learning time. As
long as the patterns come from a subspace, learning
Algorithm 1 will yield a matrix W which is orthogonal
to all the patterns of the training set. In the recall
phase, the proposed denoising algorithms 2 and 3 deal
only with W ·e, where e is the noise vector. In order to
show that the pattern retrieval capacity is exponential
in n, all we need to demonstrate is that there exists a
training set X with C patterns of length n for which
C ∝ arn, for some a > 1 and 0 < r.

Theorem 4 Let X be a C × n matrix, formed by C
vectors of length n with entries from the set S. Fur-
thermore, let k = rn for some 0 < r < 1. Then, there
exists a set of vectors for which C = arn, with a > 1,
and rank(X ) = k < n.

The proof of this theorem is by construction. The
details are outlined in the Supplementary Materials.

7. Simulation Results

We have performed simulations over synthetic and nat-
ural databases to investigate the performance of the
proposed algorithm and confirm the accuracy of our
theoretical analysis.

7.1. Synthetic Dataset

There is a systematic way of generating patterns sat-
isfying a set of linear constraints. More specifically,
we generate a matrix G ∈ Rk×n of rank k = r · n
(0 < r < 1) such that all the entries are non-negative
and lie between 0 and γ − 1 > 0. We construct the
patterns of the dataset by setting x = u · G, where
u ∈ Rk is an integer-valued random vector whose en-
tries lie between 0 and υ − 1 > 0. We select γ, υ, and
G such that all entries of x be less than S. This real-
ization is based on the constructive proof of Theorem
4 and more details can be found in the supplementary
materials.

In our simulations, we assume that each pattern neu-
ron is connected to approximately 5 clusters. The
number of connections should be neither too small (to
ensure information propagation) nor too big (to adhere
to the sparsity requirement).

In the learning phase, Algorithm 1 is run in parallel for
each cluster which results in learning the constraints.
In the recall phase, at each round, a pattern x is sam-
pled uniformly at random from the training set. Then,
each of its entries gets corrupted independently with
probability pe. Afterwards, Algorithm 3 is used to de-
noise the corrupted pattern. We repeat this process
many times to calculate the error rate, and compare
it to the bound derived in section 5.2.

7.2. Learning Results

The left panels in Figures 3 illustrate the degree dis-
tributions of pattern and constraint neurons, respec-
tively, over an ensemble of 5 randomly generated sim-
ulation setups. The horizontal axis shows the normal-
ized degree of pattern (resp., constraint) neurons and
the vertical axis represents the fraction of neurons with
the given normalized degree. The parameters for the
learning algorithm are αt ∝ 0.95/t, β = 0.75/αt and
θt = 0.05.

We have executed the learning algorithm for different
network sizes and learning parameters. Qualitatively,
they all look similar to Figure 3. Moreover, in al-
most all cases, the learning phase converged within
two learning iterations, i.e. by going over the data set
only twice.
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Figure 3: Pattern and constraint neuron degree distributions for n = 400, L = 50, and on average of 20
constraints per cluster. The learning parameters are αt ∝ 0.95/t, β = 0.75/αt and θt ∝ 0.05/t.
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Figure 4: The percentage of variable nodes with the
specified sparsity measure.

Effect of θt: An interesting issue to investigate is the
effect of the hyper-parameter θt = θ0/t, which is the
sparsity threshold. Intuitively, the higher the θ0 is,
the sparser the network will be. Figure 4 confirms this
expectation. The figure corresponds to a single cluster
with n = 400 and n = 800 pattern nodes. The hori-
zontal axis of the figure is the sparsity of each weight
vector, defined as % = κ/n, with κ being the number
of non-zero elements in the n-dimensional vector. The
vertical axis represents the percentage of the weight
vectors with the given sparsity measure.

Fig. 4 illustrates two trends: as the sparsity thresh-
old (θ0) grows, the network becomes sparser. Further-
more, when the network becomes larger, the connec-

tions will also become relatively sparser.

7.3. Recall Results

The top panel of Figure 3 illustrates the performance
of the recall algorithm. The horizontal and vertical
axes represent the number of initial erroneous neu-
rons and the final pattern error rate, respectively. The
performance is compared with the theoretical bound
derived in section 5.2, as well as the results of the al-
gorithms proposed in (Salavati & Karbasi, 2012) and
(Kumar et al., 2011). Note the slight difference be-
tween the theoretical and simulation results in the low
noise regime (emphasized in the right panel of Fig-
ure 3), which is due to the following facts: 1) we stop
Algorithm 3 after a limited number of iterations, tmax,
and 2) the network size is small. The threshold pre-
dicted by Theorem 3 becomes accurate as n→∞.

8. Future Work

We believe that the same method could easily be ex-
tend to natural datasets, as they exhibit weak minor
components in their correlation matrix. In this case,
these datasets could approximately be mapped to a
subspace which could be then learned by our algo-
rithm. A good case in point is the dataset of natural
images belonging to a particular class, which is in fact
part of our ongoing research.
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