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Abstract

This document provides proofs for results in Vladymyrov and Carreira-Perpiñán (2013) (“the paper”).

1 Equations for the first and second derivatives of F

In the root-finding algorithms we optimized over the parameter α = log β to avoid dealing with negative param-
eters and to make the problem more linear. The function that we optimize and its derivatives are as follows:

F (x, α,K) = eαm1 + logZ − logK

∂F (x, α,K)

∂α
= e2α(m2

1 −m2)

∂2F (x, α,K)

∂α2
= 2e2α(m2

1 −m2) + e3α(m3 − 3m1m2 + 2m3
1).

2 Bounds for β

We want bounds β∗

L and β∗

U on β, i.e., satisfying H(β∗

L) > logK > H(β∗

U ), that are easy to compute and as tight
as possible. Below, we prove the bounds in the paper.

Given a query point i, call the distances to the nearest neighbors d21 < d22 < · · · < d2N . Define d2 = 1
N

∑N

n=1 d
2
n,

d4 = 1
N

∑N

n=1 d
4
n, ∆

2
N = d2N − d21, ∆

2
2 = d22 − d21. (If some of the distances are equal, the results hold taking ∆2

2

as the first nonzero d2n − d21.)

Lemma 2.1. The individual terms of the entropy (eq. (3) in the paper) can be bounded as follows:

d21 <

N
∑

n=1

pnd
2
n < d2 (1)

N exp(−d2β) <

N
∑

n=1

exp(−d2nβ) < N exp(−d21β) (2)

logN − d2β < log
(

N
∑

n=1

exp(−d2nβ)
)

< logN − d21β (3)

Nd2 exp(−d4

d2
β) <

∑N

n=1 d
2
n exp(−d2nβ) (4)

1

1 + (N − 1) exp(−∆2
2β)

< p1(β) <
1

1 + (N − 1) exp(−∆2
Nβ)

. (5)

Proof. The first inequality in (1) comes trivially from the fact that the distances are sorted. For the second one note

that g(β) =
∑N

n=1 pnd
2
n is strictly monotonically increasing, since g′(β) = Ep

{

d4n
}

−
(

Ep

{

d2n
} )

2 = varp
{

d2n
}

> 0

and limβ→0 g(β) = d2. The first inequality in (2) can be obtained using Jensen’s inequality with coefficients 1
N
.

The second one can be derived easily using the fact they the distances are sorted. Inequality (3) comes from (2)

by exponentiation. Inequality (4) is obtained using Jensen’s inequality with coefficients 1/
∑N

n=1 d
2
n. Finally, (5)

is obtained by dividing by d21 and replacing d2n for n = 2, . . . , N with d2n (where n is the smallest integer such that
d2n 6= d1) or d

2
N , respectively.
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Lemma 2.2. The function h(x) = −2(1− x) log 2(1−x)
N

is strictly monotonically decreasing for x ∈ [3/4, 1]

Proof. Consider the function f(x) = −x log x
N
. This has a positive derivative f ′(x) = −(1+ log x

N
) in the interval

x ∈ (0, N
e
). Then, for N > e

2 (so for all N > 1 if N is integer), f(x) is strictly monotonically increasing in the
interval x ∈ (0, 1

2 ]. Thus, h(x) = f
(

2(1− x)
)

is strictly monotonically decreasing in the interval p1 ∈ [3/4, 1].

Theorem 2.3 (Cover and Thomas, 1991, Th. 16.3.2). Let P and Q be two probability mass functions such that
‖P −Q‖1 ≤ 1

2 . Then

|H(P )−H(Q)| ≤ −‖P −Q‖1 log
‖P −Q‖1

N
.

Now we have everything ready to prove Theorem 1.1 from the paper.

Theorem 2.4. The lower and the upper bounds for β can be found using the formulae:

βL = max

(

N

N − 1

log N
K

∆2
N

,

√

log N
K

d4N − d41

)

(6)

βU =
1

∆2
2

log
( p1
1− p1

(N − 1)
)

(7)

where p1 is the only solution in the interval [3/4, 1] of the equation:

2(1− p1) log
N

2(1− p1)
= log

(

min(
√
2N,K)

)

. (8)

Proof. Let us prove the lower bound first. Using (3) we can bound the second term in the entropy with

H(β) > β
N
∑

n=1

pnd
2
n + logN − βd2.

Now applying inequalities (1) and (4) separately on the first term above and using the fact that exp(x) ≥ 1 + x
we get the following two bounds:

H(β) > logN − β(d2 − d21) = logN − β

(

1

N

N
∑

n=2

d2n + (1− 1

N
)d21

)

> logN − β(1− 1

N
)∆2

N

H(β) > β
Nd2 exp(−β d4

d2
)

N exp(−βd1)
+ logN − βd2 = logN − βd2

(

1− exp(−β(d
4

d2
− d21))

)

≥ logN − β2(d4 − d21d
2) ≥ logN − β2(d4N − d41).

Equating the right part of both inequalities to logK and solving for β we get βL1 = N
N−1

logN−logK

∆2

N

and βL2 =
√

log N
K
/(d4N − d41). The maximum of those values will give the desired lower bound.

Now the upper bound. Using theorem 2.3 and choosing Qn = δn1, n = 1, . . . , N we have ‖P −Q‖1 = |p1−1|+
∑N

n=2 |pn| = 2(1−p1). We then have that if p1(β) ≥ 3
4 thenH(β) ≤ h(p1(β)), where h(p1) = −2(1−p1) log

2(1−p1)
N

.
Thus, if we can show that h(p1) ≤ logK for all p1 ∈ [ 34 , 1], then H(β) ≤ logK and β will be the required βU .

First of all, using lemma 2.2 we can turn the condition p1 ∈ [ 34 , 1] into h(p1) ∈ (0, log
√
2N ]. Thus, to

satisfy both conditions above, we need to find β such that h(p1(β)) ≤ log(min(
√
2N,K)). We can solve for p1

numerically the equation h(p1) = min(log
√
2N, logK) e.g. using Newton’s method or a fixed-point iteration (the

problem is well defined and has unique solution, from lemma 2.2). However, solving p1(β) for β is still costly,
so we can use inequality (5) to bound p1 with a function Π(β) = 1/(1 + (N − 1) exp(−∆2

2β)). Finally, we have
H(β) ≤ h(p1(β)) < h(Π(β)) = log(min(

√
2N, logK)). Solving the last equation for β gives the bound sought.
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