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Abstract

Several approaches have recently been pro-
posed for modeling of continuous-time net-
work data via dyadic event rates condi-
tioned on the observed history of events
and nodal or dyadic covariates. In many
cases, however, interaction propensities —
and even the underlying mechanisms of in-
teraction — vary systematically across sub-
groups whose identities are unobserved. For
static networks such heterogeneity has been
treated via methods such as stochastic block-
modeling, which operate by assuming latent
groups of individuals with similar tenden-
cies in their group-wise interactions. Here
we combine ideas from stochastic blockmod-
eling and continuous-time network models by
positing a latent partition of the node set
such that event dynamics within and between
subsets evolve in potentially distinct ways.
We illustrate the use of our model family by
application to several forms of dyadic inter-
action data, including email communication
and Twitter direct messages. Parameter es-
timates from the fitted models clearly reveal
heterogeneity in the dynamics among groups
of individuals. We also find that the fitted
models have better predictive accuracy than
both baseline models and relational event
models that lack latent structure.
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1 Introduction

Statistical methods for analyzing network data are in-
creasingly useful for studying phenomena ranging from
online social behavior to protein interactions [1]. Re-
cent work has expanded to include settings in which
we observe events occurring between nodes over time
(i.e., relational events, as opposed to static edge struc-
tures or ongoing relationships [2, 3, 4]), with the com-
mon goals of modeling interaction dynamics in terms
of both endogenous mechanisms and exogenous covari-
ates. A key concern in this regard is the ability to
detect differential behavioral tendencies on the part of
subsets of nodes, the dynamic analog of role structure
in classical social network analysis [5].

In the cross-sectional case, stochastic blockmodels [6]
have been proposed as a family of approaches that
capture behavioral similarity by identifying subsets of
nodes with similar patterns of ties to those in other
sets. While it is natural to apply these ideas directly
to relational event data via blockmodeling of the time-
marginalized rates of interaction among dyads (effec-
tively treating the event structure as a valued graph),
there are limits to what this approach can detect. Con-
sider Figure 1 for example. In the top left panel, we de-
pict the time-marginalized frequencies of simulated in-
teractions between members of two groups (A and B),
with darker cells indicating higher interaction frequen-
cies. A clear role structure is present, with members
of each subgroup interacting at higher rates with co-
members than out-group members; such a structure is
easily detectable via conventional blockmodeling tech-
niques. By contrast, consider the interaction patterns
shown in the top right panel of Figure 1. Here, there
is no systematic difference in marginal rates between
the two groups.

There is, however, a difference to be detected in the
top right panel: events from a member of group B to a
member of group A tend to be reciprocated sooner
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than events from group A’s members to group B’s
members. These differences are depicted by the red
dots in the lower two plots, where large y-values in-
dicate a propensity for reciprocated events among a
specific pair of blocks, as labeled on the x-axis. The
fact that the two plots are identical shows this be-
havior is present in both the rate-differentiated and
rate-undifferentiated examples. Even in the absence
of marginal differences in propensity to communicate
(i.e. the rate-undifferentiated case), groups A and
B are distinctive in terms of their dynamic behav-
ior. A blockmodeling approach that classifies nodes
based on shared dynamics (rather than merely shared
marginal communication rates) can potentially iden-
tify such subtle distinctions; in this paper, we intro-
duce such an approach.

Borrowing from the intuition of stochastic blockmod-
els, we propose a continuous-time model family for
network-based event sequences where latent clusters
of nodes share similar patterns of interaction. Our ap-
proach employs a flexible framework for specifying how
the process depends on the previous history of events
[2, 7]. In this way one can compare theories about un-
derlying processes and make predictions about future
data conditioned on the past, simultaneously adjusting
for unobserved heterogeneity.

We describe how one learns the latent cluster assign-
ments and model parameters via MCMC, and illus-
trate the behavior of the model with simulated data.
Using several real-world social network data sets in-
volving dyadic communication, we compare the pre-
dictive performance of the fitted models to standard
baselines. We conclude by showing that the parame-
ter estimates reveal interpretable structure in the event
dynamics, enabling the study of a dynamic extension
to stochastic equivalence.

2 Model

Consider a sequence of events A = (0, t1, . . . , tM ) aris-
ing from a nonhomogeneous Poisson process with in-
tensity λ(t). If the intensity is left continuous and
piecewise constant with respect to a set of knots τ
then the likelihood can be written

L(A|θ) =

M∏
m=1

λ(tm) exp

{
−
∫ tM

0

λ(s)ds

}

=

M∏
m=1

λ(tm)

|τ |∏
k=1

exp {−(τk − τk−1)λ(τk)} (1)

The above approach is easily extended to marked point
processes where each event contains additional infor-
mation. In Figure 2a we show a simple example of re-
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Figure 1: Illustration of differentiation by rate of inter-
action versus by dynamic behavior. The left column
shows an example where within-block communication
is large, and there is a higher tendency for reciprocity
within a block. In the situation where the two groups
are not differentiated by rate, as in the right column, a
standard blockmodel is unable to distinguish between
groups A and B. The proposed method can, however,
learn such groups by employing more flexible defini-
tions of shared dynamics.

lational events occurring among N nodes, where each
event in the process contains both a sender i and a
recipient j such that (i, j) ∈ R, where R is the risk set
is defined as the set of all possible dyadic events. The
study of human communication often involves such
data (e.g., phone calls, online interaction, etc.) where
the nodes represent people and each event represents
one person communicating with another.

In the proposed approach we assume that events in-
volving dyad (i, j) ∈ R follow a Poisson process
with intensity λi,j(t|·) that is piecewise constant with
knots τ = {t0, . . . , tM} at each event. The inten-
sity λi,j(t|·) depends on the previous history of events
At = {(tm, im, jm) : tm ∈ [0, t)}. The likelihood of
an observed event history AtM (extending from time
0 to the time tm of the final event and denoted A for
convenience) is

L(A|θ) =

M∏
m=1

λim,jm(tm|·)×∏
(i,j)∈R

exp{−(tm − tm−1)λi,j(tm|·)}. (2)

Here we aim to learn about the dynamics within and
between subsets of nodes. Specifically, we propose al-
lowing each node i to belong to a latent cluster zi while
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Figure 2: Illustration of relational event data and the assumptions of the model. (a) A sequence of two events
among four nodes: (1,2) occurs at time t1 and (2,3) occurs at time t2. (b) Examples of intensity functions
consistent with (a): λ1,2(t) (solid) and λ3,4(t) (dashed).

using a log linear model for the intensity functions

log λi,j(t|At, β, z) = β′zi,zjs(t, i, j,At)

where for each pair of clusters (k, l) we have a param-
eter vector βk,l ∼ Normal(µ,σ2I) that corresponds to
the P -dimensional vector of statistics s(t, i, j,At) com-
puted from the previous history At. Thus, the rate of
(i, j) events has the same parameters as other events
occurring between group zi and zj .

As shown in Figure 2, we only allow each intensity
function λi,j(t) to change following an event where i
was the sender or the recipient. This is sensible in dis-
tributed settings where i has limited knowledge about
interactions among other actors.

We allow the blocks to share information by placing a
hierarchical prior on the collection of βk.l parameters
where µp ∝ N(0, 1) and σ2

p ∼ Inv-Gamma(ασ, βσ),
where 1 ≤ p ≤ P . The cluster assignments are given
a nonparametric prior zi ∼ CRP(α), allowing for a
flexible number of clusters.

2.1 Model specification

Table 1 lists the statistics s(t, i, j,At) used in Sec-
tion 5. For example, when a node’s out-degree is in-
dicative of future activity, one may wish to include s4
(sender out-degree) in the specification of s. We use
1 to denote the indicator function where 1(A) = 1
if A is true, and 0 otherwise. We normalize the
counts associated with the statistics by the number
of events up until a dyad’s prior changepoint by us-
ing f(x) = log x+1

m+N(N−1) . Other statistics could be of

interest for particular substantive questions [2, 8].

The rest of the statistics in Table 1 aim to capture
various types of participation shift that play a role in
conversational norms [9]. For example, an ab-ba ef-
fect indicates an increased propensity for reciprocity
where the event (a, b) is followed by (b, a). Another

example is a turn-taking effect where an event (a, b)
is followed by b initiating an event with an individual
other than a, denoted ab-by. These statistics are bi-
nary and simply indicate whether or not the event in
question can be classified as an example of that par-
ticular transition. Although in this paper we only use
the statistics in Table 1, in general one can use any
quantity that is computed using the previous history
of events or known covariates about nodes or dyads.
The only restriction within the proposed framework
is that the statistic may not change in value between
each observed event.

2.2 Relation to other models

Our formulation is reminiscent of the stochastic block-
model [6] for static networks which models the prob-
ability of a dyad as p(yi,j) = logit−1(ηzi,zj ) where
ηzi,zj is interpreted as a mixing rate between group
zi and group zj . In our proposed method, however,
the blockmodel structure facilitates the study of intra-
group and inter-group dynamics via a continuous-time
network model.

The proposed family of models generalizes several im-
portant special cases. For example, using only the
intercept statistic s0(t, i, j,At) = 1 is analogous to the
stochastic block model for static networks. Under this
model each dyad is a homogeneous Poisson process
and all dyad intensities λi,j within block (zi, zj) have
the same intensity, exp{βzi,zj}. As these intensities
do not change under this specification, the likelihood
simplifies to

L(A|β) =

M∏
m=1

λim,jm
∏

(i,j)∈R

exp{−tMλi,j} (3)

Alternatively, if one models only the order of the events
(ignoring the times at which they occur), we obtain a
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conditional logit model

L(A|β) =

M∏
m=1

λim,jm(tm|·)∑
(i,j)∈R λi,j(tm|·)

. (4)

The functional form is similar to conditional logit mod-
els used for discrete choice data [10], though here the
possible choices are all the dyads in R.

Stochastic blockmodels have been extended to longi-
tudinal network data involving a sequence of networks
occurring at discrete times [11, 12]. The temporal ex-
tensions to block models, ERGMs, etc., are only appli-
cable to longitudinal settings where an entire network
is observed at discrete time steps and where relation-
ships between nodes are temporally extensive. These
longitudinal extensions to stochastic blockmodels are
not directly applicable to the data that we model,
namely sequences of timestamped, dyadic events re-
flecting temporally non-extensive interaction.

The proposed model is an extension of recent work
modeling event-based social network data using an
event history approach [2, 3, 4, 13, 8, 14]. Relational
event models such as these require a knot at each ob-
served event, while other approaches such as [15] learn
the regions where an intensity is constant, using deci-
sion trees to allow for a nonlinear relationship between
statistics and intensity functions. We instead use la-
tent variables to allow for heterogeneity in intensities
across the set of possible events. Other approaches in-
clude using Hawkes processes to model reciprocation
among clusters of individuals [16], allowing previous
events among those individuals to alter the current in-
tensity of interactions—but this approach cannot flex-
ibly incorporate other types of effects as we do here.

3 Inference

We describe below the use of Markov chain Monte
Carlo methods to sample from the posterior distribu-
tion of our parameters.

3.1 Sampling z

We use Gibbs sampling to sample the latent class as-
signments z from the conditional distribution

p(zr|z−r,A, α,β) ∝p(A|z,β)p(zr|z−r, α)

p(A|z,β) ∝
M∏
m=1

λim,jm(tm|·)1[r∈{im,jm}] ×∏
(i,j)∈Ur

exp{−(tm − tm−1)λi,j(tm|·)}

where Ur = {(i, j) ∈ R : r ∈ {i, j}} is the set of dyads
involving node r. Under a CRP(α) prior, we have

p(zi = k|z−i, α) = nk and p(zi = K + 1|z−i, α) = α
where nk is the number of nodes assigned to cluster k.

3.2 Sampling β, µ, and σ2

For each block (k, l) we need to sample the vector of
parameters βk,l from its posterior

p(βk,l|A, z,µ,σ2) ∝ p(βk,l|µ,σ)p(A|z,β)

p(βk,l|µ, σ) =

P∏
p=1

p(βk,l,p|µp, σ2
p)

p(A|z,β) ∝
M∏
m=1

λim,jm(tm|·)1[(im,jm)∈Vk,l] ×∏
(i,j)∈Vk,l

exp{−(tm − tm−1)λi,j(tm|·)}

where Vk,l = {(i, j) : zi ∈ {k, l} or zj ∈ {k, l}} is the
set of dyads with a sender in group k and a recipient
in l. We sample each βk,l,p via slice sampling. We use
a conjugate prior (µp, σ

2
p) ∼ NIG(0, ν, ασ, βσ) that

allows for straightforward sampling from the posterior
of µ and σ conditioned on β, though we omit the
details here due to space constraints.

3.3 Hyperparameter settings

In our experiments we use α = 1 and use Algorithm 8
from [17] with 5 extra clusters drawn from the prior.We
set ασ = 5, βσ = 1, and ν = 1 so that in the presence
of little data we encourage shrinkage towards the up-
per level parameters µ. As with other Bayesian latent
variable models, we note that the predictive accuracy
of the model can depend on the hyperparameters.

3.4 Scalability

Likelihood computation depends on the number of
changepoints (i.e. knots) in all of the intensity func-
tions being modeled. We take advantage of our restric-
tion on the types of statistics s to reduce the compu-
tational complexity of computing our likelihood as

L(AtM |θ) =

M∏
m=1

λim,jm(tm|·)×∏
(i,j)∈Rim,jm

exp{−(tm − τm,i,j)λi,j(tm|·)}

where event m is the dyad (im, jm), τm,i,j is the time
of the changepoint for λi,j(t|·) prior to the mth event,
and Ri,j is the set of dyads whose intensity changes if
(i, j) occurs.

By limiting the number of changepoints, comput-
ing the likelihood p(A|z,β) for Gibbs sampling zr is
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Statistic Formula

Intercept s0(t, i, j,At) = 1
Reciprocity (ab-ba) s1(t, i, j,At) = 1(im = i, jm = j, ivmij = j, jvmij = i)
Turn-continuing (ab-ay) s2(t, i, j,At) = 1(im = i, jm = j, ivmij = i, jvmij 6= j)
Turn-taking (ab-by) s3(t, i, j,At) = 1(im = i, jm = j, ivmij = j, jvmij 6= i)
Sender out-degree s4(t, i, j,At) = f(

∑
m:tm<t 1(im = i))

Sender in-degree s5(t, i, j,At) = f(
∑

m:tm<t 1(jm = i))
Dyad count s6(t, i, j,At) = f(

∑
m:tm<t 1(im = i, jm = j))

Table 1: Statistics used to specify intensity functions using the previous history At, where vmij is the index of
the changepoint for λi,j(t) previous to event m.
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Figure 3: Illustration of 2500 simulated events, as described in text. (a) Counts of each dyad. (b) Boxplot
of distribution of participation counts across dyads. The top left shows an increased propensity for reciprocity
within cluster 1; bottom right shows more ab-ay events within cluster 2. (c) Parameters (in red) and posterior
credible intervals (in black).

O(|Ur| ·P ·N), avoiding a factor of N2. In practice, we
precompute τm,i,j and s(tm, i, j,At) for all m, i, and
j. This can be done in one pass through the data set.

4 Simulation

We check our model-fitting procedure using a small
synthetic data set involving 10 nodes from 2 groups
where 1) within group communication is more likely,
2) events among members in the first group are more
likely to be reciprocated (i.e. a positive ab-ba effect),
and 3) events among members of the second group are
more likely to be followed by an event with the same
sender (i.e. a positive ab-ay effect). The specification
of s is s(t, i, j,At) = [s0, s1(t, i, j,At), s2(t, i, j,At)].
For the synthetic data set we use parameter vec-
tors β1,1 = (0, 3, 0), β1,2 = β2,1 = (−1, 0, 0), and
β2,2 = (0, 2, 0). Data is generated by sequentially com-
puting λi,j(tm|·) for all (i, j) ∈ R, drawing tm+1−tm ∼
Exp(

∑
i,j λi,j(tm|·)), and drawing the dyad (i, j) ∼

Categorical(λi,j(tm|·)/
∑
i,j λi,j(tm|·)).

Though the dyad counts for the synthetic data set do
not reveal any block structure (as seen in Figure 3), the
center plot shows each block has empirical differences
in their dynamics. Intensities for reciprocal actions
among nodes in group 1 are e2 ≈ 7.4 times greater, in-
tensities for turn-taking actions among nodes in group
1 are e1.75 times greater, intensities for turn-continuing
actions among nodes in group 2 are e2 times greater,
and intensities for dyadic interactions between the two
groups have a multiplicative effect of e1. Fitting the
model with K = 2 recovers the true latent classes, and
the posterior credible intervals of the parameters cover
the true parameter values (see Figure 3c). As dis-
cussed in Figure 1, a standard stochastic block model
fit to the aggregated counts in Figure 3a is unable to
identify the latent group structure that is present.

5 Model fitting and experiments

A variety of real world data sets are used to explore
the efficacy of the model. The following data sets are
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(a) Observed counts (b) Intercept estimates (c) ab-ba estimates (d) ab-by estimates

(e) Observed counts (f) Intercept estimates (g) ab-ba estimates (h) ab-by estimates

Figure 4: Comparing observed counts and parameter estimates for the University data set. Darker values are
larger. Estimates are rescaled posterior means (β̂zi,zj ,p− µ̂p)/σ̂p for each dyad (i, j). Learned parameters suggest
heterogeneity exists in both total activity (b) as well as dynamics, as seen in (c) and (d). Figures (e-h) show a
magnified view of the first two blocks; while the overall rate of (1,2) and (2,1) events is similar, the tendency for
ab-by transitions differs.

sequences of dyadic events, where each event has a
sender, recipient, and timestamp. For each data set,
we hold out the final Mtest events for evaluation.

• Classroom [18]: 445 directed communication among
27 people a high school classroom collected via par-
ticipant observation (Mtest = 145).

• University email [19]: 3300 dyadic emails among 88
users with at least 30 emails (Mtest = 1300).

• Enron email [20]: 4000 dyadic emails among 141
individuals between July 2001 and August 2001
(Mtest = 1000).

• Twitter direct messages: Tweets from Twitter.com
occurring between from May 11, 2009 to January
26, 2012 that contained the hashtag #rstats. This
hashtag is used to denote messages pertaining to
the R statistical computing environment and some-
times statistical discussion more generally. We col-
lect dyadic events by selecting tweets beginning with
the @ symbol (called a mention), and mark the first
mentioned user as the recipient. Of 28337 total
tweets in this time period, 3926 were directed events
among a total of 1079 users. We use a subset 4330
events among 487 users who participated in more
than one event (Mtest = 1330).1

• MIT Reality Mining [21]: 2000 phone calls among
the 89 recipients between October 2001 and Febru-
ary 2002 (Mtest = 1000).

1Data availability limited by Twitter terms of service.

5.1 Model-based exploratory analysis

Parameter estimates of the proposed model can reveal
the presence of both symmetries and asymmetries in
the block structure of communication rates among the
nodes of the network. The asymmetries that the model
reveals are often of interest. For example, an asym-
metry in intercept estimates for a particular pair of
groups implies that one group tends to be the sender
and the other tends to be the recipient. Asymmetries
for other effects are similarly interpretable. Consider
interactions initiated by a member of block B1 and di-
rected to a member of block B2. If the estimate for
the ab-ba parameter is larger for the set of (B1, B2)
interactions than for (B2, B1) interactions, then the
model suggests that those in block B2 tend to respond
to emails from those in B1 than vice versa.

Figure 4 uses a fitted model to provide an example of
the differences in the dynamics that can exist between
two groups of dyads with similar rate of occurrence.
In this particular example we used the University data
set and fit the proposed model with an intercept s0,
ab-ba effects s1, and ab-by effects s3. In Figure 4a
we show the observed number of times each dyadic
event occurred over the course of the data set, while
the intercept estimates in Figure 4b reveal the general
propensity at which two blocks tend to communicate.
The rows and columns have been sorted according to
block membership.
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An interesting example of asymmetric dynamics ex-
ists in the University data between block 1 and block
2. Figure 4e-h focuses on the interactions between
members of block 1 to members of block 2, providing
a close-up version of the respective areas surrounded
by a red square in Figure 4a-d. Under the model we
find that communication from block 2 to block 1 has
a higher propensity for ab-by transitions under the
model. Though such asymmetries are unsurprising
from a sociological point of view, our model has al-
lowed us to examine this tendency while adjusting for
the overall propensity for interaction.

5.2 Prediction experiments

We evaluate the predictive ability of the fitted models
by comparing models based on both a) the loglikeli-
hood and b) recall, for held-out data. Throughout the
experiments we use all of the statistics found in Ta-
ble 1. The loglikelihood of the test set is computed
sequentially using Equation 2 where

λ̂i,j(tm) =
1

L

∑
l

λi,j(tm|β(l), z(l),At)

is averaged using L posterior samples.

In addition, we compute recall to evaluate whether the
next observed event is among the most likely according
to the model. At each event m we sort the predicted
intensities of all possible events in decreasing order,
find the rank of the observed event in the list of pre-
dicted intensities, and compute the mean number of
events ranking above cutoffs κ = 5 and κ = 20.

Several baselines are included for comparison:

• uniform places uniform probability on all dyads,

• online ranks events at time t by the num-
ber of times the dyad has occurred previously
ronline(m, i, j) =

∑
m:tm<t

1(im = i, jm = j),

• marginal uses the product of the observed marginal
frequencies rmarg(m, i, j) =

∑
m:tm<t

1(im =
i)
∑
m:tm<t

1(jm = j).

• BM is a stochastic blockmodel (i.e. our model with
only an intercept term).

Note for processes that are homogeneous over time,
online should do well with large amounts of data
while marginal and BM can capture individual het-
erogeneity and group level heterogeneity in overall ac-
tivity. However, neither marginal nor BM can capture
temporal structure such as that seen in Figure 4c and
Figure 4d. These baselines can be quite competitive
when evaluated predictively and can also provide in-
sight into the performance of more complex models on
the same data sets.

We additionally perform experiments that evaluate the
likelihood of future data under our model. As our
method jointly models which dyads occur and when
they occur, any alternative baseline method needs to
also model these two aspects. In this vein, we extend
the above baselines by assuming each dyad is a Poisson
process with estimated rate

λ̂i,j(tm) =
M

tM

rb(i, j) + ξ∑
i,j rb(i, j) + ξ

where rb(i, j) is the statistic for a given baseline (de-
scribed above) and ξ = 1 is a smoothing parameter.
There are a large number of other possible baselines
that one might use, but most are not directly appli-
cable as they do not work with events in continuous
time.

In order to investigate the role of the number of clus-
ters, we use an upper bound K∗ on the number of clus-
ters during the fitting process. Note that the model
with K∗ = 1 is an important baseline — it is simply a
relational event model with no groups.

5.3 Results

In Table 2 we compare the loglikelihood of held-out
test data under our proposed model to each of these
baselines. There are two broad conclusions that are ev-
ident across all of the data sets: (1) the relational event
models outperform all of the baselines and (2) the pro-
posed method (i.e. K∗ > 1) outperforms a relational
event model lacking block structure (i.e. K∗ = 1),
indicating the presence of interaction heterogeneity in
the datasets.

In Table 3 we include the corresponding results for the
recall experiment at a cutoff of 5 and 20, respectively,
with the same broad conclusions as for the loglikeli-
hood experiment. As an example of these types of pre-
dictions, using the Mobile data we are making a pre-
diction of the next event among 892 possible events—
the next event is among the 5 highest-ranked edges
16.3 percent of the time by the K∗=2 model. This is
1291 times more often than predicting events with our
uniform baseline. Note that the absolute numbers for
the baselines (e.g., zero in the 1st 3 decimal places for
uniform) are very low because of the very large num-
ber of outcomes (e.g, 892). For the ranking task on
Enron there are small systematic improvements rela-
tive to all baselines (including K∗ = 1), while on the
phone and University data there are large systematic
improvements. Although prediction of the next rela-
tional event in a large group is a difficult task, our
models show respectable performance despite a lack of
covariates or other information on the actors or groups.
Such information can also be employed in our frame-
work, where available, by appropriate choice of s.
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Baseline Relational event model
Dataset unif marg online BM K∗=1 K∗=2 K∗=3 K∗=10
Classroom -5.379 -3.837 -3.320 -3.404 -3.023 -2.960 -3.087 -3.203
University Email -8.764 -7.729 -6.661 -7.594 -6.013 -6.029 -5.995 -5.977
Enron Email -9.355 -9.657 -7.593 -8.425 -7.025 -6.860 -6.835 -7.264
Mobile Phone Calls -9.612 -7.756 -6.607 -7.374 -6.783 -7.417 -6.107 -6.605
Twitter Dir. Messages -5.106 -3.662 -4.216 -2.962 -3.170 -2.266 -2.016 -4.432

Table 2: Comparing mean loglikelihood for each event across methods for each dataset. Larger values are better.

Baseline Relational event model
κ Dataset unif marg online BM K∗=1 K∗=2 K∗=3 K∗=10
5 Classroom 0.000 0.000 0.020 0.002 0.047 0.047 0.047 0.026

University Email 0.000 0.029 0.029 0.007 0.029 0.030 0.044 0.047
Enron Email 0.002 0.086 0.085 0.000 0.053 0.065 0.088 0.088
Mobile Phone Calls 0.010 0.023 0.020 0.024 0.028 0.163 0.162 0.157
Twitter Dir. Messages 0.000 0.000 0.000 0.000 0.030 0.007 0.006 0.000

20 Classroom 0.000 0.034 0.042 0.003 0.062 0.063 0.077 0.058
University Email 0.000 0.029 0.029 0.016 0.036 0.038 0.069 0.060
Enron Email 0.002 0.116 0.135 0.000 0.127 0.116 0.138 0.182
Mobile Phone Calls 0.024 0.027 0.042 0.046 0.056 0.260 0.261 0.262
Twitter Dir. Messages 0.000 0.000 0.020 0.000 0.047 0.041 0.045 0.031

Table 3: Comparing recall at cutoff 5 and 20 across methods for each test data set. Larger values are better.

6 Discussion

In this paper we introduced a family of relational
event models that can flexibly capture heterogeneity
in underlying interaction dynamics of network data
over time. Our approach generalizes traditional, static
notions of stochastic equivalence on nodes (such as
stochastic blockmodels) to the dynamic context. The
proposed model family posits the existence of groups
of nodes, such that all members of a group are gov-
erned by the same dynamic process, and groups are
differentiated by having different dynamic processes.

The proposed approach has the ability to uncover sys-
tematic differences in dynamic behaviors among sub-
sets of nodes, even in the absence of differences in
marginal interaction rates. The analyses of Section
5 show that this model family can show improved pre-
dictive accuracy over baseline methods on real data
with respect to ranking tasks and the likelihood of
unobserved data. In particular, our proposed ap-
proach leads to improved predictive accuracy when
compared to both (a) relational event models that
lack latent clusters, and (b) stochastic blockmodels
for count data, both of which are special cases of our
model family. Though prediction is not the main focus
of our work, these results provide evidence that having
latent structure (i.e. K > 1) can lead to improvements
in predictive power. However, our prediction results
also show that it is easy to overfit with this model
family. As K increases beyond 2 (e.g., for the unre-
strained CRP prior), these models are prone to overfit
(e.g., see the non-bold entries in the rightmost column

of Tables 2 and 3). This is not surprising, given that
the number of fitted parameters scales as the square
of the number of components K in the model. A nat-
ural direction worth exploring for this family is a class
of priors that are more resistant to overfitting (e.g.,
by imposing more structure on the parameters within
each group).

Another direction to explore is that of including differ-
ent statistics in the specification of s(t, i, j,At), mod-
ifying the prior on each block’s β that induces some
sparsity in the parameter estimates, and using our ap-
proach to study how the roles of these statistics vary
across nodes. One potentially interesting extension,
analogous to [22], would be to allow the latent class zi
to be drawn from node-specific membership vectors πi
after each change point. Allowing underlying dynam-
ics to be governed by a latent membership structure
opens the door to a wide range of possibilities for fur-
ther exploration.
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