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Abstract
We introduce a method for regularizing lin-
early parameterized functions using general
derivative-based penalties, which relies on sam-
pling as well as finite-difference approximations
of the relevant derivatives. We call this approach
sample-based approximate regularization (SAR).
We provide theoretical guarantees on the fidelity
of such regularizers, compared to those they ap-
proximate, and prove that the approximations
converge efficiently. We also examine the em-
pirical performance of SAR on several datasets.

1. Introduction
Regularization is critical to controlling the complexity of
hypothesis spaces and achieving favourable bias-variance
trade-offs. Some machine learning methods even owe most
of their success to an effective use of regularization. For ex-
ample, a major reason for the success of SVMs is arguably
their use of regularization that is “natural” in the RKHS tied
to their kernel. For some choices of kernels, this Tikhonov-
like regularization has a smoothness-inducing interpreta-
tion (Schölkopf & Smola, 2002). For example, the RKHS
norm induced by the popular Gaussian RBF kernel penal-
izes all orders of derivatives of the learned function (Yuille
& Grzywacz, 1988). Spline-based methods, which are
ubiquitous in statistics but less common in machine learn-
ing, also rely on smoothness-inducing, derivative-based
penalties. In particular, for univariate inputs or addi-
tive models, a second-order derivative penalty can be ap-
plied exactly in the nonparametric setting, leading to cubic
smoothing splines (Wahba, 1990). But, this exact penalty
quickly becomes intractable as the training set grows or the
order of modeled interactions increases. While attempts
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have been made to produce computationally-efficient ap-
proximations of spline-like penalties (Eilers & Marx, 1996;
Wood, 2003), full spline-based methods generally scale un-
favorably.

In this paper, we introduce a method for efficiently approx-
imating a general class of derivative-based penalties, which
we call Sample-based Approximate Regularization (SAR).
This approach applies to hypothesis spaces that are linearly
parameterized, i.e., in which the input x is transformed
into a feature space φ(x) and the output is approximated
by φ(x)>w. This type of hypothesis space includes SVM-
style approximators, feedforward neural networks, and var-
ious other types of regressors using features that are useful
for particular application domains, such as SIFT, MFCC,
etc (Lowe, 1999; Davis & Mermelstein, 1980). Based
on the success of derivative-based penalties in the related
RKHS and spline settings (Pearce & Wand, 2006), and
on the empirical success of problem-specific features, it is
desirable to obtain derivative-based regularizers that work
with a wide range of feature transformations, e.g., ones not
restricted to explicitly-computable RKHS kernels.

The SAR method can be used to augment the standard
l2 and l1 regularizers that are commonly used with “gen-
eral” feature transforms (i.e., non-kernel transforms). Con-
veniently, the regularizers produced by SAR are of the
Tikhonov-type (i.e., J(fw) = w>Σw for some Σ), and
can thus be applied efficiently with standard software. The
computational complexity of SAR depends only loosely on
the complexity of φ and not at all on the size of the train-
ing set, thus improving on costs of spline-based approaches
to regularizing derivatives. We prove that the regularizers
produced by SAR converge efficiently to the exact penal-
ties they approximate. We also compare the loss of a SAR-
regularized regression estimator to the loss of an estimator
shaped by the exact regularizer approximated by SAR.

In the rest of this paper, we present our generalization of
smoothness-inducing, derivative-based regularizers (Sec-
tion 2), present our approach for approximating them effi-
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ciently (Section 3), analyze its theoretical properties (Sec-
tion 4), and present empirical results illustrating the power
of the proposed approach (Section 5).

2. Smoothness-inducing regularizers
Consider a function f : X → R and a measure ν ∈M(X ).
If f ′(x) exists and is L2(ν)-integrable, then for X = R a
natural measure of the smoothness of f is:∫

X
|f ′(x)|2dν , (1)

One typically extends (1) to multi-dimensional domains
X = Rd by integrating the squared norm of the gradient.
We propose instead a more general form, expressible as:

J1(f) =

∫
X

∮
Sx

(s>∇f)2dsxdν . (2)

The inner integral is over the surface Sx of a hyper-sphere
centred at x, according to a location-dependent measure
over directions sx ∈ M(Sx). Each s ∈ Sx corresponds
to a unit-length vector pointing away from x in some direc-
tion. If sx is set to a uniform distribution over the unit
hyper-sphere for all x ∈ X , then J1(f) is proportional
to the integrated squared norm of ∇xf , due to the linear-
ity of the dot-product. If sx is the set of delta functions
on the coordinate vectors of X , J1(f) penalizes the inte-
grated squared norm of∇xf exactly, as in the typical multi-
dimensional extension of (1). But, the generalized deriva-
tive penalty J1(f) allows flexibility in assigning location-
dependent importance to the variation of f along particu-
lar directions. Moreover, as we will see, it is amenable to
sample-based approximation.

Another reasonable measure of the smoothness of f uses its
second-order derivatives. In one dimension, if f ′′(x) exists
and is L2(ν)-integrable, then∫

X
|f ′′(x)|2dν (3)

gives the standard penalty used in, e.g., cubic smoothing
splines (Wahba, 1990). We extend the penalty in (3) to
multiple dimensions as follows:

J2(f) =

∫
X

∮
Sx

(
s>(Hxf)s

)2
dsxdν , (4)

where s ∈ Sx are again distinct unit-length vectors jointly
covering all directions pointing away from x, and Hxf is
the Hessian of f evaluated at x. When sx is uniform over
Sx, J2(f) penalizes the squared Frobenius norm ||Hxf ||2F
w.r.t. ν, which provides regularization that has proven use-
ful in previous work (Rifai et al., 2011; Kim et al., 2009).
As with (2), the generalized form in (4) encompasses a
broad range of regularizers, due to flexibility in the choice
of ν and sx, and is amenable to approximation.

Algorithm 1 SAR( p̃x, p̃sx , N , φ, i, ε )

1: Σ̃i := zero matrix of size p× p.
2: for j = 1 to N do
3: Sample Xj from p̃x.
4: Sample Sj from p̃sXj .
5: Compute δεi (Xj , Sj , φ) (see: (9) for defn.)
6: Σ̃i := Σ̃i + δεi (Xj , Sj , φ)δεi (Xj , Sj , φ)>.
7: end for
8: return 1

N Σ̃i.

3. The SAR Method
The goal of our approach is to efficiently approximate reg-
ularizers of the form (2) and (4). The functionals J1 and J2

both involve integrating some quantity w.r.t. ν and sx. SAR
approximates the integrands in J1 and J2 efficiently using
finite-difference approximations of directional derivatives
and estimates the integrals using a Monte-Carlo approach
based on samples from ν and sx. We call methods to sam-
ple from ν point samplers and methods to sample from sx
direction samplers.

We focus on linearly-parameterized functions fw(x) =
φ(x)>w, where φ : X → Rp is a fixed feature transform,
whose components are one-dimensional measurable func-
tions {ϕi}pi=1, and w ∈ Rp is a parameter vector. We de-
note the function space defined by the span of φ as F .

Given a point sampler p̃x, a direction sampler p̃sx , a sample
size N , and a derivative order i, Algorithm 1 produces a
matrix Σ̃i that defines SAR with: J̃i(fw) = w>Σ̃iw for
functions fw ∈ F . To simultaneously regularize multiple
derivative orders, their corresponding Σ̃i can be combined
via element-wise summation.

Once an approximate regularizer Σ̃i has been produced by
SAR, any method for estimating Tikhonov-regularized lin-
ear models can be applied. The computational cost of SAR
comes from lines 3-6 of Algorithm 1. Assuming efficient
point/direction samplers p̃x/p̃sx , the feature extraction in
line 5 and the outer products in line 6 dominate the cost of
SAR. If the expected cost of computing φ(x) is cφ, the tar-
get derivative order is i, and φ(x) ∈ Rp, then line 5 costs
cφ(i+ 1) per sample and line 6 costs p2 per sample. Lines
3-6 each execute N times when using N samples to com-
pute Σ̃i. Depending on cφ and p, either line 5 or 6 may
dominate the overall cost. The discussion section further
considers computation costs.

We now describe approaches for approximating the direc-
tional derivatives and for constructing samplers p̃x/p̃sx .
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3.1. Approximating directional derivatives

For functions fw ∈ F , the first-order forward finite differ-
ence is given by 1

εw
>(φ(x+ εs)− φ(x)), thus:

〈∇xfw, s〉2 ≈ w>δε1(x, s, φ)δε1(x, s, φ)>w, (5)

in which we introduce the first-order finite difference vector
δε1(x, s, φ) , 1

ε (φ(x+ εs)− φ(x)).

For a point x and direction s, the term s>(Hxf)s in (4) is
equivalent to the second-order directional derivative of f ,
at x, in direction s, with finite difference approximation:

s>(Hxf)s ≈ f(x)− 2f(x+ εs) + f(x+ 2εs)

ε2
(6)

For fw ∈ F , the square of this term is given by:

(s>(Hxfw)s)2 ≈ w>δε2(x, s, φ)δε2(x, s, φ)>w, (7)

in which we use the second-order finite difference vector
δε2(x, s, φ) , 1

ε2 (φ(x)− 2φ(x+ εs) + φ(x+ 2εs)).

Based on (5) and (7), the key to SAR is that the integrals in
J1 and J2 can be approximated by:

w>
(∫
X

∮
S

δεi (x, s, φ)δεi (x, s, φ)>dsx dν

)
w, (8)

in which we use finite difference vectors and i ∈ {1, 2}
indicates the derivative order to regularize.

To regularize higher-order derivatives with SAR, only the
finite difference vectors used in (8) need to change:

δεi (x, s, φ) =

i∑
j=0

(−1)j
(
i

j

)
φ (x+ (i− j)εs)

εi
. (9)

When regularizing a single order i with fixed ε, the denom-
inator εi in (9) can be ignored, as it is constant for all δεi .
In this case, numerical precision (for εi → 0) is not an is-
sue. A similar idea can be applied when regularizing across
multiple orders. Principled approaches to select ε and min-
imize the side-effects from finite precision are subject for
future work. We note that we have not run into any numer-
ical problems in the experiments.

3.2. Sampling from ν and sx

We now describe concrete methods to sample from ν and
sx. Suppose we are given a set Dn = {X1, X2, . . . , Xn}
of “training” input observations Xi ∈ Rd, drawn from the
source distribution p(x). We will approximate ν using N
samples, contained in a set D′N .1 A natural choice for the

1In the supervised learning setting, Dn contains label infor-
mation as well, but we ignore it in the process of generating D′N .
In a semi-supervised setting, we can also use unlabelled data.

Algorithm 2 FuzzyPointSampler( Dn, N , L ).
1: for j = 1 to N do
2: Sample Xj from Dn uniformly at random.
3: Sample a direction Sj uniformly at random.
4: Sample a perturbation length εj from L.
5: Add X̃j = Xj + εjSj to D′N .
6: end for
7: return D′N .

Algorithm 3 BlurryBoxSampler( Dn, N , L )
1: Compute the minimal bounding box for the Dn.
2: for j = 1 to N do
3: Sample Xj uniformly from within the box.
4: Sample a direction Sj uniformly at random.
5: Sample a step length εj from L.
6: Add X̃j = Xj + εjSj to D′N .
7: end for
8: return D′N .

sampler is to draw values from an approximation to p(x)
obtained by perturbing the existing points Dn, an approach
based on the manifold/cluster assumption underlying most
work on semi-supervised learning. Let L be a distribu-
tion over lengths, which determines the degree of “smooth-
ing” to apply during sampling. Algorithm 2 samples from
the empirical approximation to p(x), convolved with the
isotropic distribution with length distribution L.

The second method samples approximately from the uni-
form distribution over X , to mimic the distribution implicit
in the RKHS regularization accompanying Gaussian RBFs.
Algorithm 3 samples from a uniform distribution over the
smallest axis-aligned box enclosingDn convolved with the
isotropic distribution with length distribution L.

We propose two methods to sample directions from sx. The
first is to sample a unit direction uniformly at random. The
second is to sample a unit direction uniformly at random,
transform it by some matrix, and then rescale it to unit
length. The first method produces a regularizer that pe-
nalizes derivatives in all directions equally, and the second
biases the penalty based on the eigenvectors and eigenval-
ues of the transform matrix. Developing direction samplers
with location-dependent biases, e.g., to emphasize invari-
ance w.r.t. small translations/rotations in an object recogni-
tion task, is an interesting topic for future work.

4. Theoretical Analysis
The goal of this section is twofold. First, we study the be-
haviour of a SAR-based regularized least-squares regres-
sion estimator (Theorem 1). Second, we focus on the con-
vergence behaviour of the sample-based approximate reg-
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ularizer J̃N (·) to the regularizer J(f). We provide two
results, one in the form of the supremum of the empir-
ical process (Theorem 2) and the other in the form of
the supremum of the modulus of continuity of the empir-
ical process (Theorem 3). For simplicity, we only study
the 1st-order derivative-based regularizer and its central
difference-based SAR.

Let us first define some notations. The gradient of a
function f : Rd → R is denoted by ∇f(x). We
denote the central difference approximation of the gra-
dient by (4εf)(x) = [(4εf)1(x) · · · (4εf)d(x)] with
(4εf)i(x) = f(x+εei)−f(x−εei)

2ε , where ei are the unit co-
ordinate vectors.

Given a probability distribution ν ∈ M(X ), the
1st-order derivative-based regularizer2 is J(f) =∫
‖∇f(x)‖2 dν(x). Given D′N = {X ′1, . . . , X ′N}

with X ′i
i.i.d.∼ ν, we define the sample-based approxi-

mate regularizer as: J̃N (f) = 1
N

∑N
i=1 ‖4εf(X ′i)‖

2.
We also define JN (f) = 1

N

∑N
i=1 ‖∇f(X ′i)‖

2. Note
that for fw ∈ F , we have J(fw) = w>Σw with

the true Grammian Σ ,
∫ ∑d

i=1
∂φ(x)
xi

∂φ(x)
xi

>
dν(x).

Similarly, we have J̃N (fw) = w>Σ̃Nw with
the approximate empirical Grammian Σ̃N ,
1
N

∑N
i=1

∑d
j=1(4εφ)>j (Xi)(4εφ)j(Xi).3 For a fixed

L > 0, the truncation operator βL : F → F is de-
fined as (βLf)(x) , f(x) when |f(x)| ≤ L and
(βLf)(x) , sgn

(
f(x)

)
L otherwise.

The regression setup is as follows. Let Dn =

{(Xi, Yi)}ni=1 be a dataset with Xi
i.i.d.∼ µ. Assume that

the probability distribution generating the data is such
that |Y | ≤ L (almost surely) with L > 0. Denote by
f∗(x) = E [Y |X = x] the regression function, which in
general does not belong to F . Given Dn and an indepen-
dent dataset D′N , the SAR-based regression estimator f̂n is
defined as the L-truncated estimator f̂n , βLf̄n, with

f̄n ← argmin
f∈F

1

n

n∑
i=1

(f(Xi)− Y )
2

+ λJ̃N (f). (10)

We now provide an upper bound on the performance of this

2IfX is a proper open subset of Rd, for some samplesX ′ close
to the boundary of X , (4εf)i(X

′) may not be defined (because
one side can be outside the domain). If we ensure that supp(ν) is
at least ε away from the boundary in the l∞-norm, all the results
hold with X ⊂ Rd instead of X = Rd.

3Note that the meaning of subscripts of J and J̃ is different
from Section 3. Here JN and J̃N refer to the use of N samples to
estimate the 1st-order derivative (using the true derivative or its fi-
nite difference approximation, respectively), while in the previous
section we used Ji and J̃i to refer to the ith-order derivative-based
regularizer and its SAR version. No confusion should arise as we
always use N to refer to the number of samples.

estimator. To state our result, for k ≥ 1, we define

Dk(φ) , max
i=1,...,d

sup
x∈X

∥∥∥∥∂kφ(x)

∂xki

∥∥∥∥
2

.

If the k-th partial derivatives are not defined, we set
Dk(φ) = ∞. For our results, we require the existence of
D1(φ) and D3(φ). All proofs are deferred to Appendix A.
Theorem 1. Assume that all {ϕi}pi=1 are three-time dif-
ferentiable and supx∈X ‖φ(x)‖2 ≤ R. Moreover, suppose
that λmin(Σ̃N ), the smallest eigenvalue of Σ̃N , is bounded
away from zero. There exist constants c1, c2 > 0 such that
for any fixed δ > 0, with probability at least 1−δ, we have:∫ ∣∣∣f̂n(x)− f∗(x)

∣∣∣2 dµ(x) ≤

2 min
w∈Rp,‖fw‖∞≤L

{
2

∫
|fw − f∗(x)|2 dµ(x) + 2λJ(fw) +

λ ‖w‖22 d
(8D2

1(φ) log(3/δ)

3N
+

ε2

6
D3(φ)[2D1(φ) +

ε2

6
D3(φ)]

)}

+
c1L

6R2

λmin(Σ̃N )

log(nL)

nλ
+
c2L

4 log(1/δ)

n
.

This result shows the effects of function approximation and
estimation errors, the way regularization coefficient λ and
J(fw) determine their tradeoff, and the error caused by
SAR. The term minw∈Rp

∫
|fw−f∗(x)|2dµ(x)+λJ(fw)

is the [regularized] approximation error and indicates how
well the target function f can be approximated in a subset
of F . The subset is determined by the true regularization
functional J(fw) = w>Σw and λ. As usual in regular-
ized estimators, increasing λ might increase the approxi-
mation error, but it decreases the estimation errorO( log(n)

nλ )
on the other hand, and vice versa. If F as defined by the
basis functions “matches” the target function (i.e., f∗ can
be well-approximated with a function in F with a small
J(f)), we can learn the target function fast. This is how
feature-engineering or data-dependent feature generation
show their benefits. It is noticeable that this result does
not depend on the dimension of the feature space p.

Results similar to this part of the theorem are known in the
supervised learning literature, cf. Theorem 21.1 of Györfi
et al. (2002) for regularized regression in Ck(R) (splines),
Theorem 7.23 of Steinwart & Christmann (2008) for reg-
ularized loss in an RKHS, and Sridharan et al. (2009) for
strongly convex objectives (which is satisfied for a convex
loss and the l2 regularizer) and linear function spaces.

The effect of using J̃N (f) instead of the true regularizer
J(f) in (10) appears in the O(‖w‖22 [ 1

N + ε2]) term. The
curious observation here is that the effect depends on the
size of w, so if the true function can be well-approximated
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by a “simple” function (measured according to ‖w‖2), we
would not suffer much from the error caused by SAR.

To better understand the behaviour of the bound, consider
the case that J(fw) = ‖w‖22 and the target function f∗ be-
longs to F , i.e., f∗ = fw∗ for some w∗. Ignoring the con-
stants and the logarithmic terms, by choosing λ = 1

‖w∗‖
√
n

to optimize the tradeoff between λJ(f∗w) and 1
nλ , we get

the upper bound of O(
‖w∗‖2√

n
[1 + 1

N + ε2]).

Remark 1. One could get
∫
|fw−f∗(x)|2dµ(x)+λJ(fw)

inside the minimizer instead of the current one, which
has a multiplicative constant of 2, at the price of having
O(
‖w‖22√
N

+ 1√
n

) instead of O(
‖w‖22
N + 1

n ). This depends on
whether we use Bernstein’s inequality or Hoeffding’s in-
equality in the proofs.
Remark 2. The quantity λmin(Σ̃N ) in the theorem is a ran-
dom function of D′N and can be calculated given D′N .

We now depart from the context of regression and focus on
the SAR procedure itself. The first result is a uniform upper
bound on the difference between J(f) and J̃N (f) for any
function f ∈ FB ,

{
φ>w : w ∈ Rp, ‖w‖2 ≤ B

}
, i.e.,

the ball with radius B w.r.t. the l2-norm of w.
Theorem 2 (Supremum of the Empirical Process
|J̃N (f) − J(f)|). Assume that all {ϕi}pi=1 are three-time
differentiable. For any fixed δ > 0 and B > 0, we have:

sup
f∈FB

∣∣∣J̃N (f)− J(f)
∣∣∣ ≤ B2ε2

6
dD3(φ)

(
2D1(φ) +

ε2

6
D3(φ)

)

+ 32B2dD2
1(φ)

√√√√2p log
(

128B2dD2
1(φ)N

δ

)
N

+
1

N
,

with probability at least 1− δ.

This theorem shows the effects of the estimation error and
the finite difference approximation error. The simplified
behaviour of the estimation error is O(B2

√
p
N ). The de-

pendence on N and p is common to the usual uniform de-
viation bounds in statistical learning for functions from a
p-dimensional linear vector space. The effect of the size of
the function space also manifests itself through B2.

The effect of the finite difference approximation error is
O(B2ε2) – neglecting terms depending on the smoothness
of the basis functions. The ε2 dependence is the usual
residual error from the central difference approximation of
a derivative. If instead we used a forward (or backward)
estimate of the derivative, we would get ε behaviour. The
dependence on B is because functions φ>w with larger
‖w‖2 might have a larger derivatives, so their finite differ-
ence approximation would have a larger residual error.

Theorem 2 provides an upper bound for the supremum of
the empirical process only over a subset FB of F , but it
does not provide a non-trivial result for the supremum of

|J̃N (f) − J(f)| over F . This is expected as for large w,
the true regularizer J(fw) would be large too, and the devi-
ation of J̃N (fw) around it can also be large. Nonetheless,
we can still study the behaviour of the empirical process
as a function of J(f). This is known as the modulus of
continuity result in the empirical process theory (or rela-
tive deviation of error). The following theorem provides
such a result. Here we denote a ∨ b = max{a, b}.
Theorem 3 (Modulus of Continuity for the Empirical Pro-
cess |J̃N (f)− J(f)|). Assume that all {ϕi}pi=1 are three-
time differentiable. Suppose that λmin(Σ), the smallest
eigenvalue of Σ, is bounded away from zero. W.l.o.g., as-
sume that 256dD2

1(φ) ≥ 1. Let α > 0. There exists c1(α)
such that for any fixed δ > 0, we have

sup
f∈F

∣∣∣J̃N (f)− J(f)
∣∣∣

[J(f) ∨ λmin(Σ)]
1+α ≤

1

λ1+α
min (Σ)

[
25dD2

1(φ)

√√√√2p log
(

512dD2
1(φ)c1(α)N
δ

)
N

+

dε2

3!
D3(φ)

[
2D1(φ) +

ε2

3!
D3(φ)

]]
,

with probability at least 1 − δ. Here c1(α) can be chosen
as follows: For 0 < α ≤ 1

4e log(2) ≈ 0.1327, c1(α) =

8[2 − W−1(−4α log(2))
4α log(2) ] (in which W−1 is the lower branch

of Lambert W -function), and c1(β) = 16 otherwise.

We can elucidate this result by seeing how it works in the
context of Theorem 2, by restricting F to FB . In this case,
J(f) ≤ O(B2), so we get supf∈FB |J̃N (f) − J(f)| ≤

c2(d,D1, D3,Σ)B2(1+α)[
√

p log(c1(α)N/δ)
N +ε2] instead of

c3(d,D1, D3)B2[
√

p log(B2N/δ)
N + ε2] in Theorem 2. The

major difference is in the exponent of B. When α goes
to zero, B2(1+α) decreases, but the term c1(α) inside the
logarithm increases. As can be seen from the definition of
c1(α), when α→ 0, c1(α) blows up. Overall, even though
Theorem 2 provides a slightly tighter upper bound on the
error forFB , Theorem 3 can be considered a stronger result
as it holds for all functions in F .
Remark 3. The effect of the input space dimension d on
SAR’s statistical properties, as can be seen in all results, is
quite mild, and only appears in constants. SAR’s sampling
is a typical Monte Carlo integration, for which convergence
rate is dimension-independent. The minor effect of d is due
to using finite differences and the way we have definedDk.

Finally it is worth mentioning that in the manifold regular-
ization literature, there are results similar to Theorem 2. In
particular, they provide conditions that the error between
the various variants of the graph Laplacian-based and the
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Laplace-Beltrami-based regularizers goes to zero. For ex-
ample, Bousquet et al. (2004) proved the asymptotic con-
vergence for a fixed function. This should be compared to
our much stronger uniform convergence rate over a func-
tion class – albeit the regularizers are different. Belkin &
Niyogi (2008) showed the asymptotic uniform convergence
over a class of functions, but did not provide a convergence
rate. Hein (2006) extended that result and provided a con-
vergence rate over a subset of Hölder-continuous functions.
In contrast to Theorem 1, the results in those papers did not
consider the effect of error in regularization to the estima-
tor (e.g., classifier or regression estimator), though Hein
(2006) mentioned that his result could be used to prove
consistency for algorithms that use graph Laplacian-based
regularizers. This would be similar to using Theorem 2
to prove error bounds, which is a path that we did not
take. In the different context of transductive learning (or
semi-supervised learning on graphs), Belkin et al. (2004)
provided a generalization error result for regularized algo-
rithms on graphs, with a graph Laplacian-based regularizer
being one possible choice, using tools from algorithmic sta-
bility. None of these papers provides a modulus of conti-
nuity result similar to Theorem 3.

5. Experiments
Our first tests involved least-squares regression with inputs
x ∈ R and outputs y ∈ R. The data distribution was de-
signed to emphasize SAR’s ability to regularize heteroge-
nous basis functions. This contrasts with standard RKHS
regularization, which uses more restricted collections. The
joint distribution over (x, y) was set so four cycles of a sin
wave occurred over the input domain, each with a wave-
length 2.5 times longer than the previous one. The wave
amplitude was scaled linearly from 1 to 2 over the input do-
main. The density of x was set so the expected number of
observations seen for each cycle was the same. The train-
ing y values were corrupted by zero-mean Gaussian noise
with standard deviation scaling linearly from 0.2 to 0.4 over
the input domain. Performance was measured using uncor-
rupted y values. We call this distribution SynthSin1d.

The smooth sinusoid underlying SynthSin1d seems
amenable to RKHS-regularized RBF regression, but causes
problems due to large changes in the length scale of use-
ful correlations over the input domain. When restricted to
fixed bandwidth RBFs, the RKHS approach will always un-
derperform on some part of the function not suited to the
chosen bandwidth, as shown by results in Figure 1a.

Using SynthSin1d, we compared the performance of SAR2
regularization with L2 regularization and RKHS regular-
ization of Gaussian RBFs. SAR2 and L2 regularization
were applied to four RBFs anchored at each training point,
with bandwidths γ ∈ {2, 4, 8, 16}. RKHS regularization

was applied independently at each bandwidth, using the
same RBFs, i.e., four RKHS-regularized solutions were
learned for each train/test set. We compared the perfor-
mance of the three methods on training sizes ∈ [50...100].
For each training size, 100 training sets were sampled from
SynthSin1d (with output noise) and, for each set, the func-
tion learned with each regularizer was tested on 5000 points
sampled from SynthSin1d (without output noise). Regular-
ization weights for each method were set independently for
each training size, to maximize measured performance.

We measured performance as the percentage of variance in
the true function recovered by the learned approximation:

% variance recovered = 1−
∑
i(ŷi − yi)2∑
j(yj − ȳ)2

, (11)

in which ŷi gives the value of the learned approximation
at test point xi, yi gives the value of the true function at
xi, and ȳ gives the mean of the true function. The value
of (11) approaches 1 as the approximation approaches the
true function (i.e., larger values are better).

Figure 1a plots the mean performance of each regulariza-
tion method for each considered training set size, with error
bars indicating the upper and lower quartiles over the 100
tests at each size. The performance of RKHS regulariza-
tion at each bandwidth is plotted in gray and the maximum
performance is in red. In these tests, SAR2 significantly
outperformed both L2 regularization using the same basis
functions and RKHS regularization using any of the fixed-
bandwidth subsets of the basis functions.

Our second tests extended the form of SynthSin1d to inputs
(x1, x2) ∈ R2 and outputs y ∈ R. We call this distribution
SynthSin2d. Importantly, the value of y depended most
strongly on x1, making x2 relatively uninformative. We
performed 100 tests at each of the same training sizes as
for SynthSin1d. SAR2 and L2 regularization were applied
to collections of three Gaussian RBFs anchored at each
training point, with bandwidths γ ∈ {0.5, 2, 8}. RKHS
regularization was applied independently for each fixed-
bandwidth RBF subset. Regularization weights for each
method were set at each training size, to maximize mea-
sured performance. We also measured the performance
of SAR2 regularization with direction sampling biased as
follows: select a direction (x1, x2) uniformly, multiply its
x2 by 10, and then rescale (x1, x2) to the desired length.
A SAR regularizer computed subject to this bias more
severely penalizes change in the estimated function along
the x2 axis, which was known to be less informative.

Figure 1b shows that SAR2 significantly improves on the
performance of strong RKHS regularization applied to a
more restricted set of basis functions and simple L2 regu-
larization applied to an equally flexible set of basis func-
tions. Adding a “correct” bias during regularizer construc-
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Figure 1. Full descriptions of the tests underlying these plots are given in the main text. (a) shows the performance of SAR2 on
SynthSin1d when learning with Gaussian RBFs with multiple bandwidths, w.r.t. the number of training samples. We also plot the
performance of L2 regularization applied to the same RBFs and the performance of RKHS-regularized regressions for each fixed-
bandwidth subset of the RBFs. The best performance of RKHS regularization over the considered bandwidths is highlighted in red and
per-bandwidth performances are plotted separately in gray. (b) is analogous to (a), but for tests based on SynthSin2d. (b) also plots the
performance of SAR2 with biased directional sampling, which penalizes non-linearity in the learned function more along the axis which,
for SynthSin2d, was uninformative. (c)/(d) compare the qualitative behavior of L2 and biased SAR2 on SynthSin2d.

tion further improves the advantage of SAR2, particularly
for small training sets. Figure 1c/d qualitatively compares
the behavior of L2 and biased SAR2 regularization. Biased
SAR2 “interpolates” noticeably better than L2.

5.1. Natural Data

We write “full RBF” for RBFs based on the values of all
features of an observation, and we write “univariate RBF”
for RBFs based on the value of a single feature of an ob-
servation. RBFs were Gaussian and RKHS regularization
was applied during estimation, unless noted otherwise.

We tested SAR with the “Boston housing” dataset from
UCI/StatLib, which comprises 506 observations x ∈ R13

describing features of neighborhoods in the Boston area
(circa 1978), with the prediction target being the median
value of homes in each neighborhood. We preprocessed
the observations by setting features to zero mean and unit
variance, and setting the targets to zero mean. We com-
pared six methods: L2, SAR4, Gaussian RBFs, 4th-order
B-spline RBFs, additive P-splines, and boosted Trees. We
measured performance with respect to (11).

We performed tests with training sets of size 150-450. For
each size, 100 rounds of randomized cross validation were
performed, with non-training examples used for evaluating
performance. When boosting trees, we set the maximum
depth to 3 and performed 250 rounds of boosting with a
shrinkage factor of 0.1, which maximized measured per-
formance. For other methods, we set regularization weights
separately for each training size to maximize measured per-
formance. Kernel bandwidths were selected to maximize
performance with 300 training samples.

L2, SAR4, and Gauss all used full Gaussian RBFs cen-
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Figure 2. (a) compares performance on the “Boston housing”
data. Error bars give 95% confidence intervals. (b) shows per-
round outcomes of each train/test round at training set size 300. y
axes give accuracy of SAR4 and x axes give accuracy of RKHS-
regularized Gaussian RBFs or boosted trees.

tered on each training point with bandwidth γ = 0.05 fixed
across all tests. B-spline used 4th-order B-spline RBFs
centered on each training point with bandwidth γ = 0.2.
P-spline applied 4th-order regularization to 2nd-order ad-
ditive B-spline bases with 30 knots per dimension. In ad-
dition to full RBFs, L2 and SAR4 used a collection of uni-
variate RBFs, with the RBFs on each axis centered on the
empirical deciles of the corresponding features. The stan-
dard deviation of each univariate RBF was set to the max-
imum of the distances to its upper and lower “neighbors”.
The single binary feature in this dataset was represented by
just two univariate RBFs, centered on its min/max values.
Univariate RBF structure was not optimized.

SAR4 estimated approximate regularizers for first through
fourth-order derivatives and combined the resulting matri-
ces naively, by an unweighted sum. SAR4 used a com-
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Figure 3. SAR4 convergence on housing and USPS data. Left col-
umn: convergence of the regularizer matrix. Right column: con-
vergence of the learned function. Parameters for (a)/(b) were as
before, using 50 training sets of size 300. USPS results in (c)/(d)
used 50 random training sets of size 500. y axes in (a)/(c) give
supw:||w||2≤1 |J̃x(fw)− J̃∞(fw)|, which tracks convergence of
the SAR-induced penalty. The lighter line plots empirical mean
at each sample size and the darker line plots the theoretical rate
1/
√
N . y axes in (b)/(d) measure difference between the function

induced by a regularizer based on x samples and a converged one.

pound point sampler which drew 75% of its samples from
the fuzzy point sampler in Algorithm 2 and 25% of its sam-
ples from the blurry box sampler in Algorithm 3. Both
samplers were constructed strictly from the training set
during each round of CV. An unbiased direction sampler
with stochastic lengths was used. The length distributions
L in point/direction sampling were set to the non-negative
half of a normal distribution, with standard deviation set to
0.5/0.2 times the median nearest-neighbor distance in the
training set. A lower bound of 0.05 was set on the effective
step length ε.4 The sampler parameters were not optimized.

Figure 2 presents these tests. SAR4 consistently outper-
formed the other methods, as seen in 2a. Figure 2b exam-
ines relative performance more closely, by plotting results
on individual train/test splits for training sets of size 300.
SAR4 outperformed boosted trees and Gauss-RBF on most
splits. Figure 3 examines SAR4’s convergence in this set-
ting.

Our final tests used the standard USPS/MNIST digit recog-
nition datasets. We tested on 100 randomly sampled
training sets of size 500/2500 and tested on points not
seen in training. We compared standard L2, RKHS, and
SAR4 regularization using sampler parameters matching
those used for tests on the housing data. Each method
used full Gaussian RBFs at each training point (as for

4This was always much less than the st. dev. of L.

an SVM), with bandwidth γ = 0.015/0.025, which
were selected to maximize performance of RKHS reg-
ularization. We optimized the 1-vs-all squared hinge
loss. Regularization weights were set to maximize mea-
sured performance. For L2/RKHS/SAR4 the mean and
standard deviation of classification accuracy in these
tests was 92.7(0.5)/94.0(0.4)/94.1(0.4) for USPS and
94.5(0.02)/95.2(0.01)/95.4(0.02) for MNIST. Both RKHS
and SAR4 significantly outperformed L2 on USPS. All
pairwise comparisons were significant on MNIST. Figure 3
illustrates convergence of SAR on the USPS data. Note that
MNIST tests used φ(x) ∈ R2500 for x ∈ R784.

6. Discussion
SAR provides a general approach to controlling complex-
ity in a broad class of functions, i.e., those representable
by linear combinations of a fixed set of basis functions, by
minimizing the nth-order derivative. For n = 1, we pro-
vided bounds on the error in the regularizer produced by
SAR and showed that the approximation process is reason-
ably sample-efficient. The main benefit of SAR is its flexi-
bility, as can be seen from the empirical examination.

Some other work in the manifold learning literature uses
the data distribution to define data-dependent regularizers.
For instance, Bousquet et al. (2004) defines a density-based
regularizer. But, their practical implementation only con-
siders a first-order derivative-based regularizer using Gaus-
sian basis functions. SAR provides a more general frame-
work to regularize higher-order derivatives, without requir-
ing analytically tractable integrals.

When the data belongs to a low-dimensional manifold, a
common choice is to use the norm of the Laplace-Beltrami
operator on the manifold. However, this norm cannot be
computed analytically in most cases, so sample-based ap-
proximations are used, e.g., the graph Laplacian opera-
tor Zhu et al. (2003); Belkin et al. (2006).5 SAR is more
general and is not designed with the goal of approximating
the Laplace-Beltrami-based regularizer.

SAR raises a number of other interesting questions. On the
theoretical side, it would be interesting to analyze SAR for
higher-order derivatives, establish the influence of structure
in the point measure ν and direction measure sx, or make
precise the relation between SAR and Laplacian-based reg-
ularization. On the practical side, developing heuristic
approaches to reduce the effective sample complexity, as
well as point and direction samplers that better leverage
prior knowledge is desirable. Reducing the per-sample cost

5 As discussed by Nadler et al. (2009), the use of the first-order
derivative is not appropriate for high-dimensional input spaces, so
one might use higher-order derivatives instead (Kim et al., 2009;
Zhou & Belkin, 2011).
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of SAR by leveraging techniques for reduced-rank kernel
approximation in SVMs and implementing SAR so as to
take advantage of sparsity in φ(x) both seem worthwhile,
as they could significantly reduce the cost of the outer-
products in line 6 of Algorithm 1.

A. Proofs
We use the following lemma in our proofs.

Lemma 4. Suppose that all {ϕi}pi=1 are three-time differ-
entiable. For any fw(·) = φ(·)>w, we have |J̃N (fw) −
JN (fw)| ≤ dε2

3! D3(φ) ‖w‖22
[
2D1(φ) + ε2

3!D3(φ)
]
.

Proof. Consider a three-time differentiable function g :
Rd → R. By Taylor’s theorem, we have

g(x+ εei) = g(x) +
∂g(x)

∂xi

ε

1!
+
∂2g(x)

∂x2
i

ε2

2!
+
∂3g(z)

∂x3
i

ε3

3!
,

for some z ∈ (x, x + εei). Since (4εg)i(x) =
g(x+εei)−g(x−εei)

2ε , we get that∣∣∣∣(4εg)i(x)− ∂g(x)

∂xi

∣∣∣∣ ≤ sup
x−εei<z<x+εei

∣∣∣∣∂3g(z)

∂x3
i

∣∣∣∣ ε2

3!

≤
∥∥∥∥∂3g(z)

∂x3
i

∥∥∥∥
∞

ε2

3!
.

Therefore,∣∣∣‖∇f(x)‖22 − ‖4εg(x)‖22
∣∣∣ ≤

d∑
i=1

∣∣∣∣∣
∣∣∣∣∂g(x)

∂xi

∣∣∣∣2 − |(4εg)i(x)|2
∣∣∣∣∣

=

d∑
i=1

∣∣∣∣∣∣∣∣∂g(x)

∂xi

∣∣∣∣− |(4εg)i(x)|
∣∣∣∣× ∣∣∣∣∣∣∣∣∂g(x)

∂xi

∣∣∣∣+ |(4εg)i(x)|
∣∣∣∣

≤
d∑
i=1

[∥∥∥∥∂3g(z)

∂x3
i

∥∥∥∥
∞

ε2

3!

] [
2

∣∣∣∣∂g(x)

∂xi

∣∣∣∣+

∥∥∥∥∂3g(z)

∂x3
i

∥∥∥∥
∞

ε2

3!

]

≤ dε
2

3!
max
i=1,...,d

{∥∥∥∥∂3g(z)

∂x3
i

∥∥∥∥
∞

[
2

∥∥∥∥∂g(x)

∂xi

∥∥∥∥
∞

+

∥∥∥∥∂3g(z)

∂x3
i

∥∥∥∥
∞

ε2

3!

]}
.

When g = fw = φ(x)>w, we have∣∣∣∂g(x)
∂xi

∣∣∣ ≤ ∥∥∥∂φ(x)
∂xi

∥∥∥
2
‖w‖2. Similarly,

∣∣∣∂3g(x)
∂x3
i

∣∣∣ ≤∥∥∥∂3φ(x)
∂x3
i

∥∥∥
2
‖w‖2. This, alongside |J̃N (fw) − JN (fw)| =

1
N

∑N
i=1

∣∣∣‖4εf(X ′i)‖
2 − ‖∇f(X ′i)‖

2
∣∣∣, the inequality

above, and the definitions of D1(φ) and D3(φ) lead to the
desired result.

The following result, which is a direct consequence of
Bernstein’s inequality for bounded random variables, will
be handy in our proofs.

Proposition 5. Let g be a nonnegative measurable func-
tion on X bounded by L > 0 almost surely. Let
X,X1, . . . , Xn ∈ X be independent and identically dis-
tributed random variables. For any fixed δ > 0, with prob-
ability at least 1− δ, we have

1

n

n∑
i=1

g(Xi) ≤ 2E [g(X)] +
8B log(1/δ)

3n
.

Proof. Let t > 0. By Bernstein inequality, we
have P

{
1
n

∑n
i=1 g(Xi)− E [g(X)] > E [g(X)] + t

}
≤

exp
(
− n(E[g(X)]+t)2

2Var[g(Z)]+ 2
3 (E[g(X)]+t)B

)
. Since g is L-bounded,

we have Var [g(X)] ≤ E
[
g2(X)

]
≤ BE [g(X)]. Substi-

tuting this value in the RHS, and after some simplifications,
we get that the probability is upper bounded by exp(− 3nt

8B ).
Setting the LHS to δ and solving for t leads to the desired
result.

We are now ready to prove Theorem 1.

The proof of this theorem is similar to the proof of Theo-
rem 21.1 of Györfi et al. (2002). The differences are 1) we
need to take a special care for using SAR instead of the true
regularizer, and 2) the function space here is different from
Ck(R) considered in that theorem.

Proof of Theorem 1. Fix δ > 0 and let δ1 = δ2 = δ3 =
δ/3. W.l.o.g. assume that L ≥ 1. We have the following
decomposition:∫ ∣∣∣f̂n(x)− f∗(x)

∣∣∣2 dµ(x)

= E
[∣∣∣f̂n(X)− Y

∣∣∣2 | Dn]− E
[
|f∗(X)− Y |2

]
= T1,n + T2,n, (12)

with

1

2
T1,n ,

1

n

n∑
i=1

∣∣∣f̂n(Xi)− Yi
∣∣∣2 − |f∗(Xi)− Yi|2 + λJ̃N (f̄n),

T2,n , E
[∣∣∣f̂n(X)− Y

∣∣∣2 | Dn]− E
[
|f∗(X)− Y |2

]
− 2

[
1

n

n∑
i=1

∣∣∣f̂n(Xi)− Yi
∣∣∣2 − |f∗(Xi)− Yi|2 + λJ̃N (f̄n)

]
.

In the following, we upper bound T1,n and T2,n.

Upper bounding T1,n: Let w× be the solution to the mini-
mization problem in the theorem statement and f× = fw× .
Note that f× is L-bounded.
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Because Yi is L-bounded, truncating the empirical min-
imizer f̄n at L always decreases the empirical loss, so
|f̂n(Xi) − Yi|2 ≤ |f̄n(Xi) − Yi|2. This in addition to the
fact that f̄n is a minimizer of (10) lead to

1

2
T1,n ≤

1

n

n∑
i=1

∣∣f̄n(Xi)− Yi
∣∣2 − |f∗(Xi)− Yi|2 + λJ̃N (f̄n)

≤ 1

n

n∑
i=1

∣∣f×(Xi)− Yi
∣∣2 − |f∗(Xi)− Yi|2 + λJ̃N (f×).

We now relate the empirical average to the ex-
pectation. The function f× is a fixed L-bounded
function, so |f∗(Xi) − Yi|2 would be (2L)2-
bounded random variables. By Proposition 5, we
have 1

n

∑n
i=1 |f×(Xi)− Yi|

2 − |f∗(Xi)− Yi|2 ≤
2E
[
|f×(X)− Y |2 − |f∗(X)− Y |2

] ∣∣∣ + 32L2 log(1/δ1)
3n ,

with probability (w.p.) at least 1 − δ1. Since
E
[
|f×(X)− Y |2 − |f∗(X)− Y |2

]
=

∫
|f×(x) −

f∗(x)|2dµ(x), we get that w.p. at least 1− δ1,

1

2
T1,n ≤2

∫ ∣∣f×(x)− f∗(x)
∣∣2 dµ(x) + λJ̃N (f×) +

32L2 log(1/δ1)

3n
. (13)

To upper bound J̃N (f×), we write J̃N (f×) ≤ |J̃N (f×)−
JN (f×)|+ JN (f×)− 2J(f×) + 2J(f×), and then upper
bound |J̃N (f×) − JN (f×)| and JN (f×) − 2J(f×). The
application of Lemma 4 leads to

|J̃N (f×)− JN (f×)| ≤
dε2

3!
D3(φ)

∥∥w×∥∥2

2

[
2D1(φ) +

ε2

3!
D3(φ)

]
. (14)

To provide an upper bound for JN (f×)−2J(f×), note that
JN (f×) = 1

N

∑N
i=1

∥∥∇(φ(X ′i)
>w×)

∥∥2

2
. For each term,

we have:
∥∥∇(φ(X ′i)

>w×)
∥∥2

2
=
∑d
j=1

∣∣∣∂(φ(X′i)
>w×)

∂xj

∣∣∣2 ≤∑d
j=1

∥∥∥∂φ(X′i)
∂xj

∥∥∥2

2
‖w×‖22 ≤ dD2

1(φ) ‖w×‖22. So by
Proposition 5, we get that

JN (f×)− 2J(f×) ≤
8dD2

1(φ) ‖w×‖22 log(1/δ2)

3N
, (15)

w.p. at least 1 − δ2. Therefore, by (13), (14), and (15)
we get that 1

2T1,n ≤ 2
∫
|fw×(x)− f∗(x)|2 dµ(x) +

2λJ(fw×) + λ
[
d ‖w×‖22 (

8D2
1(φ) log(1/δ2)

3N +

ε2

3!D3(φ)[2D1(φ) + ε2

3!D3(φ)])
]

+ 32L2 log(1/δ1)
3n , with

probability at least 1− (δ1 + δ2).

Upper bounding T2,n: We provide an upper bound on
P {T2,n > t}. We use the so-called peeling device from

the empirical process theory (cf. Section 5.3 of van de
Geer 2000 or Chapter 19 of Györfi et al. 2002) alongside
Lemma 10 (Theorem 19.3 of Györfi et al. 2002). Except
a different covering number result that we use, this part
closely follows the corresponding proof of Theorem 21.1
of Györfi et al. (2002).

Note that in this part, we use constants c1, c2, . . . > 0
without specifying their values. For s ≥ 0, define Gs ,{
g(x, y) = |βLf(x)−y|2−|f∗(x)−y|2 : f ∈ F , J̃N (f) ≤

2s+1t
2λ

}
. We have6

P {T2,n > t} ≤

P

{
∃f ∈ F : E

[
|βLf(X)− Y |2 − |f∗(X)− Y |2

]
−

1

n

n∑
i=1

|βLf(Xi)− Yi|2 − |f∗(Xi)− Yi|2 ≥

1

2

(
t+ 2λJ̃N (f) + E

[
|βLf(X)− Y |2 − |f∗(X)− Y |2

])}

≤
∑
s≥0

P

{
∃f ∈ F , 2stI{s 6= 0} ≤ 2λJ̃N (f) < 2s+1t :

E
[
|βLf(X)− Y |2 − |f∗(X)− Y |2

]
−

1

n

n∑
i=1

|βLf(Xi)− Yi|2 − |f∗(Xi)− Yi|2 ≥

1

2

(
t+ 2λJ̃N (f) + E

[
|βLf(X)− Y |2 − |f∗(X)− Y |2

])}

≤
∑
s≥0

P

{
sup
g∈Gs

E [g(X,Y )]− 1
n

∑n
i=1 g(Xi, Yi)

2st+ E [g(X,Y )]
>

1

2

}
.

For each s = 0, 1, 2, . . . , we verify the conditions of
Lemma 10 with the choice of function space Gs, and the
values of η = 2st and ε = 1/2 in the statement of the
lemma.

Because of the boundedness of all quantities involved, it is
easy to see that one can set K1 = 4L2 and K2 = 16L2 to
satisfy Conditions (A1) and (A2).

Conditions (A3) is also satisfied for
(1/2)

√
1− 1/2

√
n2st ≥ 288 max{8L2, 4

√
2L}, which

holds for

t ≥ c1
L4

n
. (16)

To relate the covering number of Gs to
that of F , note that for any g1, g2 ∈ Gs,
we have 1

n

∑n
i=1 |g1(xi, yi)− g2(xi, yi)|2 ≤

6Here we work on the probability space obtained by condi-
tioning onD′N , so the source of randomness is onlyDn. To avoid
clutter, we use P {·} instead of P {· | σ(D′N )} symbol.
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16L2 1
n

∑n
i=1 |βLf1 − βLf2|2 (f1 and f2 should be

understood as the functions that correspond to g1 and g2).
Thus,

N2 (u,Gs, z1:n) ≤

N2

(
u

4L
,

{
βLf : f ∈ F , J̃N (f) ≤ 2st

λ

}
, x1:n

)
≤

N2

(
u

4L
,

{
f : f ∈ F , J̃N (f) ≤ 2st

λ

}
, x1:n

)
Because J̃N (fw) = w>Σ̃Nw ≥ λmin ‖w‖22 (with λmin =

λmin(Σ̃N ) being the smallest eigenvalue of Σ̃N ), one can
upper bound the previous covering number by

N2

(
u

4L
,

{
fw : ‖w‖22 ≤

2st

λminλ

}
, x1:n

)
.

By Lemma 8 (Corollary 9 of Kakade et al. 2009), we have
supx1:n

logN2

(
u

4L ,
{
fw : ‖w‖22 ≤

2st
λminλ

}
, x1:n

)
≤

c22R
2

(√
2st

λminλ

u
4L

)2

. To verify Condition (A3)

for t0 ≥ 2st/8, we first calculate the en-

tropy integral
∫√t0

t0
1024L2

c2R(4L)
√

2st
λminλ

1
udu =

c2R(4L)
√

2st
λminλ

log( 1024L2
√
t0

). Since t0 ≥ 2st/8 and
on the condition that

t ≥ 1/n, (17)

we get the upper bound
c2R(4L)

√
2st
λminλ

log( 2048
√

2L2√n
2s/2

) for the inte-
gral. So the condition would be satisfied if
√
n(2st) ≥ c3RL

3
√
λmin

√
2st
λ log(nL), which is satisfied

whenever

t ≥ c4L
6R2

λmin

log(nL)

nλ
. (18)

If all the aforementioned conditioned are satisfied, by
Lemma 10 we have that

P {T2,n > t} ≤ 60
∑
s≥0

exp

(
−
n( 1

2 )2(1− 1
2 )(2st)

128× 2304× 16L4

)
≤ c5 exp

(
− c6
L4
nt
)
.

Setting P {T2,n > t} to δ3 and solve for t, we get that

t ≤ c7L
4 log(1/δ3)

n
, (19)

w.p. at least 1 − δ3. So by (16), (17), (18), and (19), we
have that there exist constants c4, c8 > 0 such that

T2,n ≤
c4L

6R2

λmin

log(nL)

nλ
+
c8L

4 log(1/δ3)

n
, (20)

w.p. at least 1− δ3.

Plugging the upper bound on T1,n and the inequality (20) in
the error decomposition (12) and noting that w× is defined
to be the minimizer in the statement of the theorem lead to
the desired result.

To prove Theorem 2, we state a covering number re-
sult. The covering number is defined in Appendix B. De-

fine lw(x) =
∑d
i=1

∣∣∣∂φ(x)>

∂xi
w
∣∣∣2 and note that J(fw) =∫

lw(x)dν(x). Define the following function space:

JB , { lw(x) : X → R : ‖w‖2 ≤ B } . (21)

Lemma 6. For any ε > 0 and x1, . . . , xn ∈ X , we have

N1 (ε,JB , x1:n) ≤
(

8B2dD2
1(φ)+ε
ε

)p
.

Proof. For any w1,w2 ∈ WB ,
{w ∈ Rp : ‖w‖2 ≤ B } and any x ∈ Rd, we have

|lw1(x)− lw2(x)| ≤∣∣∣∣∣
d∑
i=1

∣∣∣∣∂φ(x)>

∂xi
w1

∣∣∣∣2 − ∣∣∣∣∂φ(x)>

∂xi
w2

∣∣∣∣2
∣∣∣∣∣ ≤

d∑
i=1

∣∣∣∣∂φ(x)>

∂xi
(w1 −w2)

∣∣∣∣ . ∣∣∣∣∂φ(x)>

∂xi
(w1 + w2)

∣∣∣∣ ≤
d max
i=1,...,d

sup
x∈X

∥∥∥∥∂φ(x)

∂xi

∥∥∥∥2

2

‖w1 −w2‖2 ‖w1 + w2‖2 ≤

2BdD2
1(φ) ‖w1 −w2‖2 .

So for any x1, . . . , xn ∈ Rd, we have

1

n

n∑
i=1

|lw1(xi)− lw2(xi)| ≤ 2BdD2
1(φ) ‖w1 −w2‖2 .

Therefore, if we have a u-covering set w.r.t.
the l2-norm on WB , we get a 2BdD2

1(φ)u-
covering set w.r.t. the L1(x1:n)-norm on JB =
{ lw(x) : X → R : ‖w‖2 ≤ B }. This implies that

N1 (ε,JB , x1:n) ≤ N2

(
ε

2BdD2
1(φ)

,WB

)
.

The result follows from Lemma 7.

Proof of Theorem 2. By the triangle inequality, we have
|J(f) − J̃N (f)| ≤ |J(f) − JN (f)| + |JN (f) − J̃N (f)|.
We apply Lemma 4 and use the fact that ‖w‖2 ≤ B for all
functions in FB to get

sup
f∈FB

∣∣∣J(f)− J̃N (f)
∣∣∣ ≤ sup

f∈FB
|J(f)− JN (f)|+

dε2

3!
D3(φ)B2

[
2D1(φ) +

ε2

3!
D3(φ)

]
. (22)
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To upper bound the supremum of the empirical process,
supf∈FB |J(f)− JN (f)|, we use Lemmas 6 and 9. Note
that, as shown in the proof of Theorem 1, lw(x) ≤
dD2

1(φ) ‖w‖22, so for any function f ∈ FB , we have
‖lw(x)‖∞ ≤ dD2

1(φ)B2. We can now apply Lemma 9
and then Lemma 6 to get

P

{
sup
f∈FB

|J(f)− JN (f)| > t

}
≤

8E
[
N1

(
t

8
,JB , X ′1:N

)]
exp

(
− Nt2

128× 4d2D4
1(φ)B4

)
≤

(
8B2dD2

1(φ) + t
8

t
8

)p
exp

(
− Nt2

512d2D4
1(φ)B4

)

= exp

− 1

512d2D4
1(φ)B4︸ ︷︷ ︸

,c1

Nt2 + p log

(
64B2dD2

1(φ) + t

t

) .
(23)

Whenever 1/N ≤ t ≤ 64B2dD2
1(φ),

log(
64B2dD2

1(φ)+t
t ) ≤ log(128B2dD2

1(φ)N) = log(c2N).
In this case, the right-hand side of (23) is up-
per bounded by exp(−c1Nt2 + p log(c2N)). If
−c1Nt2 + p log(c2N) ≤ − c12 Nt

2, which is satisfied

for t ≥
√

2p log(c2N)
c1N

, we have

P

{
sup
f∈FB

|J(f)− JN (f)| > t

}
≤ exp

(
−c1

2
Nt2

)
.

The condition t ≤ 64B2dD2
1(φ) is always satisfied

because supf∈FB |J(f) − JN (f)| ≤ 2 ‖lw(x)‖∞ ≤
2B2dD2

1(φ).

Thus, for any fixed 0 < δ < 1,

sup
f∈FB

|J(f)− JN (f)|

≤ min

{√
2 ln(1/δ)

c1N
+

√
2p log(c2N)

c1N
+

1

N
, 2B2dD2

1(φ)

}

≤ 32B2dD2
1(φ)

√√√√2p log
(

128B2dD2
1(φ)N

δ

)
N

+
1

N
,

w.p. at least 1−δ. This along with (22) entail the statement
of the theorem.

Next we prove Theorem 3, which provides an upper
bound on the supremum of the modulus of continuity, i.e.,
supf∈F

|J̃N (f)−J(f)|
[J(f)∨λmin(Σ)]1+α .

Proof of Theorem 3. Fix δ > 0 and set β = 2α. For
any w ∈ Rp, and by the triangle inequality, we have
|J(fw)−J̃N (fw)|

1∨‖w‖2+β2

≤ |J(fw)−JN (fw)|
1∨‖w‖2+β2

+ |JN (fw)−J̃N (fw)|
1∨‖w‖2+β2

.

By Lemma 4 and noticing that ‖w‖22
1∨‖w‖2+β2

≤ 1, we upper
bound the second term as

|JN (fw)− J̃N (fw)|
1 ∨ ‖w‖2+β

2

≤
dε2

3! D3(φ) ‖w‖22
[
2D1(φ) + ε2

3!D3(φ)
]

1 ∨ ‖w‖2+β
2

≤ dε2

3!
D3(φ)

[
2D1(φ) +

ε2

3!
D3(φ)

]
. (24)

We now turn to the modulus of continuity of the empirical
process |J(fw)−JN (fw)|

1∨‖w‖2+β2

and provide a high-probability up-
per bound for it. Here we again use the peeling device from
the empirical process theory alongside Lemma 9.

P

{
sup
w∈Rp

|J(fw)− JN (fw)|
1 ∨ ‖w‖2+β2

> t

}
≤ (25)

∑
s≥0

P

 sup
w∈Rp

2sI{s 6=0}≤‖w‖2<2s+1

|J(fw)− JN (fw)|
1 ∨ ‖w‖2+β2

> t

 ≤
∑
s≥0

P

 sup
w∈Rp

‖w‖2<2s+1

|J(fw)− JN (fw)| > (2(2+β)sI{s 6= 0} ∨ 1)t

 ≤
∑
s≥0

8E
[
N1

(
(2(2+β)sI{s 6= 0} ∨ 1)t

8
,J2s+1 , X

′
1:N

)]
×

exp

(
−N [(2(2+β)sI{s 6= 0} ∨ 1)t]2

128(4dD2
1(φ)22s)2

)

in which we used the fact that at the s-th layer of peel-
ing, for which ‖w‖2 < 2s+1, the functions lw(x) =∑d
i=1

∣∣∣∂φ(x)>

∂xi
w
∣∣∣2 are upper bounded by dD2

1(φ)(2s+1)2.

Invoking Lemma 6, we get that for s ≥ 1 and
t ≥ 1/N , we have E

[
N1

(
2(2+β)st

8 ,J2s+1 , X ′1:N

)]
≤(

256dD2
1(φ)22s

2(2+β)st
+ 1
)p

≤
(
(1 + 256dD2

1(φ))N
)p ≤

(512dD2
1(φ)N)p. In the last step, we used the assumption

that 256dD2
1(φ) ≥ 1. For s = 0, the same upper bound

holds. So (25) is upper bounded by

8
∑
s≥0

(
512dD2

1(φ)N
)p

exp

(
− Nt222βs

2048d2D4
1(φ)

)
.

To provide an upper bound for this summation, first denote
r = exp(− Nt2

2048d2D4
1(φ)

). The s-dependent terms of the

summation is
∑
s≥0 r

22βs

. Note that since r < 1 and βs ≥



Sample-based Approximate Regularization

0, we always have r22βs ≤ r. Moreover, for those s that
22βs ≥ s, we have r22βs ≤ rs.
It is intuitive that when β is bounded away from zero,
the exponential term 22βs asymptotically dominates s, so
the number of s for which 22βs < s holds is finite. To
be more precise, one can solve 22βs0 = s0 to get s0 =

−W−1(−2β log(2))
2β log(2) , in which W−1 is the lower branch of

Lambert W -function (this holds only for β ≤ 1
2e log(2) ≈

0.2654. For β larger than that value, we always have
22βs ≥ s. Therefore,

∑
s≥0 r

22βs

=
∑s0
s=0 r

22βs

+∑
s>s0

r22βs ≤
∑s0
s=0 r +

∑
s>s0

rs ≤ r[s0 + 1
1−r ] ≤

r[2 − W−1(−2β log(2))
2β log(2) ]. In the last inequality, we assumed

that r < 1/2, which is satisfied if t ≥ 25dD2
1(φ)

√
2 log(2)
N .

Define c1(β) = 8[−W−1(−2β log(2))
2β log(2) + 2] for 0 < β ≤

1
2e log(2) and c1(β) = 16 otherwise. We thus have

P

{
sup
w∈Rp

|J(fw)− JN (fw)|
1 ∨ ‖w‖2+β2

> t

}
≤

c1(β)
(
512dD2

1(φ)N
)p

exp

(
− Nt2

2048d2D4
1(φ)

)
.

We set this probability to δ and solve for t to get that

sup
w∈Rp

|J(fw)− JN (fw)|
1 ∨ ‖w‖2+β2

≤

25dD2
1(φ)

√
2(p log(512dD2

1(φ)N) + log( c1(β)
δ

))

N
≤

25dD2
1(φ)

√√√√2p log
(

512dD2
1(φ)c1(β)

δ

)
N

,

w.p. at least 1 − δ. Note that the condition

t ≥ 25dD2
1(φ)

√
2 log(2)
N is satisfied. This along-

side (24) shows that supw∈Rp
|J(fw)−J̃N (fw)|

1∨‖w‖2+β2

≤

25dD2
1(φ)

√
2p log

(
512dD2

1(φ)c1(β)N

δ

)
N +

dε2

3! D3(φ)
[
2D1(φ) + ε2

3!D3(φ)
]
. Noticing that

J(fw) = w>Σw ≥ λmin(Σ) ‖w‖22 and some alge-
braic manipulations finishes the proof.

Remark 4. By inspecting the proof, we see that source of
α > 0 requirement is the modulus of the continuity of
the empirical process (that is, |J(fw)−JN (fw)|

1∨‖w‖2+β2

in the proof)
and not the error caused by the finite difference, since
|JN (fw)−J̃N (fw)|

1∨‖w‖2+β2

could be properly upper bounded even for

β = 0. The difficulty of upper bounding the empirical pro-
cess is that the magnitude of functions lw is proportional to

‖w‖22, and for β = 0, the summation in the peeling step of
the proof would diverge.

B. Auxiliary Results
In this section, for the convenience of the reader, we collect
some results that are used in the rest of the paper. First we
introduce the concept of covering number and then quote
some related results about them. Afterwards, we provide
two deviation inequalities for the empirical processes.

B.1. Covering Number

We quote the definition of covering number from Györfi
et al. (2002, Chapter 9). Let ε > 0,F be a set of real-valued
functions defined on X , and ν be a probability measure on
X . Every finite collection Nε = {f1, . . . , fNε} of func-
tions defined on X with the property that for every f ∈ F ,
there is a function f ′ ∈ Nε such that ‖f − f ′‖p,ν < ε is
called an ε-cover of F w.r.t. ‖·‖p,ν . Let N (ε,F , ‖·‖p,ν)
be the size of the smallest ε-cover of F w.r.t. ‖·‖p,ν . If
no finite ε-cover exists, take N (ε,F , ‖·‖p,ν) = ∞. Then
N (ε,F , ‖·‖p,ν) (also denoted by Np(ε,F) if the measure
ν is clear from the context) is called an ε-covering number
of F w.r.t. the same norm.

For x1:n = (x1, . . . , xn) ∈ Xn, one may also define
the empirical measure νX ,n(A) = 1

n

∑n
i=1 I{xi∈A} for

A ⊂ X . This leads to the empirical covering number
of F w.r.t. the empirical norm ‖·‖p,n and is denoted by
Np(ε,F , x1:n). If X1:n = (X1, . . . , Xn) is a sequence of
random variables, the covering number Np(ε,F , X1:n) is
a random variable too.

The following lemma upper bounds the covering number
of a ball with radius B in Rp.

Lemma 7 (Covering Number of a ball in an Euclidean
space – Lemma 2.5 of van de Geer 2000.). A ball
in Rp with radius B w.r.t. Euclidean metric (i.e.,
{w ∈ Rp : ‖w‖2 ≤ B }) can be covered by

(
4B+ε
ε

)p
balls with radius ε.

The following lemma upper bounds the covering number
of a subset of F that has bounded ‖w‖2 and ‖φ(x)‖2.

Lemma 8 (Corollary 9 of Kakade et al. 2009). Let X =
{x : ‖φ(x)‖2 ≤ R} and FB = {φ(x)>w : x ∈
X , ‖w‖2 ≤ B}. There exists a universal constant c > 0
such that

sup
x1:n

logN2(ε,FB , x1:n) ≤ c2R2B2

ε2
.

B.2. Uniform Deviation Inequalities

The following lemma provides an exponential tail inequal-
ity for the uniform deviation of the empirical average from
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the true expectation.

Lemma 9 (Uniform Deviation Inequality – Theorem 9.1
of Györfi et al. 2002). LetF be a set of functions f : Rd →
[0, L] and X,X1, X2, . . . be i.i.d. random variables taking
values in Rd. For any n ≥ 1 and any ε > 0,

P

{
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E [f(Xi)]

∣∣∣∣∣ > ε

}
≤

8E
[
N1

(ε
8
,F , X1:n

)]
exp

(
− nε2

128L2

)
.

The following result quoted from Györfi et al. (2002) pro-
vides an exponential probability tail inequality for the rel-
ative deviation of the empirical mean from the true mean.
A slightly modified version of this result was published as
Theorem 2 of Kohler (2000).

Lemma 10 (Theorem 19.3 of Györfi et al. 2002). Let
Z,Z1, · · · , Zn be independent and identically distributed
random variables with values in Z . Let 0 < ε < 1 and
η > 0. Assume that K1,K2 ≥ 1 and let F be a per-
missible class of functions f : Z → R with the following
properties:

(A1) ‖f‖∞ ≤ K1,

(A2) E
[
f(Z)2

]
≤ K2E [f(Z)],

(A3)
√
nε
√

1− ε√η ≥ 288 max{2K1,
√

2K2},

(A4) For all z1, · · · , zn ∈ Z and all δ ≥ η/8,
√
nε(1− ε)δ

96
√

2 max{K1, 2K2}
≥

∫ √δ
ε(1−ε)δ

16max{K1,2K2}

[
logN2

(
u, {f ∈ F :

1

n

n∑
i=1

f
2
(zi) ≤ 16δ}, z1:n

)]1/2

du.

Then

P

{
sup
f∈F

∣∣E [f(Z)]− 1
n

∑n
i=1 f(Zi)

∣∣
η + E [f(Z)]

> ε

}
≤

60 exp

(
− n η ε2(1− ε)

128× 2304 max{K2
1 ,K2}

)
.
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