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A. Proof of second part of Theorem 4.1
Proof. From the first part of Theorem 4.1 we get that
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B. Proof of Claim 5.1
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⇣1 follows from (8). Hence from (14) and (15) we get,
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C. Proof of Claim 5.2
Proof. Let M = UV T where U 2 Rn⇥2 and V 2 Rn⇥2 are both orthonormal matrices. Now, let S = {j s.t., (1, j) 2
⌦ or (2, j) 2 ⌦} be the set of all the columns of M that have an observed entry in any of the first two rows.

As |⌦| = n2/4, hence wlog we can assume that |S|  n/2. Let S0
= S [ S1, where S1 is any set of columns s.t.
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Note that by construction, M
ij

= 0, 81  i  2, j 2 S0. That is, the first two rows of P⌦(M) are all zeros. Since, U1,
U2 participate in only those rows. Hence, even if V is known exactly, one cannot obtain any information about a, b from
the observed entries. Only other constraints on a, b comes from orthonormality of U , which reduces to a2 + b2 = 2/n.
Now, without violating incoherence assumptions, we can have multiple solutions to the above given equation that cannot
be distinguished from each other. For example, a =
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Hence, exact recovery is not possible for the above given M for any ⌦ s.t. |⌦|  n2/4.

D. Proofs of Lemmas used to prove Theorem 4.2
In this section we present the proofs of all the lemmas used to prove theorem 4.2.

Lemma (7.1). Let M = U⌃V T

satisfy A1, A2 and let the graph G that generates ⌦ satisfy G1, G2 (see Section 3). Then,
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where ⇣1 follows from the definition of the spectral norm. Now, we bound kũT
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1 & ũTU = 0}. Note that ũTU
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⇣1 follows from the assumption G2 and ⇣2 from incoherence property A1. Using the above two bounds we get
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Lemma (7.2). Let Z 2 T , i.e., Z = UXT

+ Y V T
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Lemma (7.3). Let Z 2 T , i.e., Z = UXT
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where ⇣1 follows from A2 and ⇣2 from the incoherence property A1 and the hypothesis of the lemma.
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Hence each element of Z is bounded by,
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where v̂ = V?V
j

? and aTUTY
k

= 0. ⇣1 follows from G2 and ⇣2 from A1 and the hypothesis of the lemma. Using all the
three bounds we can finally bound k ˜Xjk2.
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Lemma (7.4). Let M,⌦ satisfy A1, A2 and G1, G2, respectively. Then, M is the unique optimum of (7), if there exists a
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⇣1 follows from the Holder’s inequality and the fact that kUV T

+ U?V
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? k = 1; ⇣2 from hY, Zi = hP⌦(Y ), Zi = 0; ⇣3
again from the Holder’s inequality; and ⇣4 from the hypothesis of lemma.


