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A. Supplementary Material
A.1. Proof of Theorem 1

In order to show that  is a well-defined map, we must
show that  (D̃

X

) is a quasi-ultrametric network for ev-
ery quasi-dendrogram D̃

X

. Given an arbitrary quasi-
dendrogram D̃

X

= (D
X

, E

X

), for a particular �

0 � 0
consider the quasi-partition D̃

X

(�0). Consider the range of
resolutions � associated with such quasi-partition. I.e.,

{� � 0
�

�

D̃

X

(�) = D̃

X

(�0)}. (17)

Right continuity (D̃4) of D̃
X

ensures that the minimum of
the set in (17) is well-defined and hence definition (8) is
valid. To prove that ũ

X

in (8) is a quasi-ultrametric we
need to show that it attains non-negative values as well as
the identity and strong triangle inequality properties. That
ũ

X

attains non-negative values is clear from the definition
(8). The identity property is implied by the first boundary
condition in (D̃1). Since [x]0 = [x]0 for all x 2 X , we must
have ũ

X

(x, x) = 0. Conversely, since for all x 6= x

0 2 X ,
([x]0, [x

0]0) 62 E

X

(0) and [x]0 6= [x0]0 we must have that
ũ

X

(x, x0) > 0 for x 6= x

0 and the identity property is satis-
fied. To see that ũ

X

satisfies the strong triangle inequality
in (7), consider nodes x, x0, and x

00 such that the lowest
resolution for which [x]

�

= [x00]
�

or ([x]
�

, [x00]
�

) 2 E

X

(�)
is �1 and the lowest resolution for which [x00]

�

= [x0]
�

or
([x00]

�

, [x0]
�

) 2 E

X

(�) is �2. Right continuity (D̃4) ensures
that these lowest resolutions are well-defined. According to
(8) we then have

ũ

X

(x, x00) = �1,

ũ

X

(x00
, x

0) = �2. (18)

Denote by �0 := max(�1, �2). From the equivalence hier-
archy (D̃2) and influence hierarchy (D̃3) properties, it fol-
lows that [x]

�0 = [x00]
�0 or ([x]

�0 , [x
00]

�0) 2 E

X

(�0) and
[x00]

�0 = [x0]
�0 or ([x00]

�0 , [x
0]
�0) 2 E

X

(�0). Furthermore,
from transitivity (QP2) of the quasi-partition D̃

X

(�0), it
follows that [x]

�0 = [x0]
�0 or ([x]

�0 , [x
0]
�0) 2 E

X

(�0).
Using the definition in (8) for x, x0 we conclude that

ũ

X

(x, x0)  �0. (19)

By definition �0 := max(�1, �2), hence we substitute this
expression in (19) and compare with (18) to obtain

ũ

X

(x, x0)max(�1, �2)=max
⇣

ũ

X

(x, x00), ũ
X

(x00
, x

0)
⌘

.

(20)
Consequently, ũ

X

satisfies the strong triangle inequality
and is therefore a quasi-ultrametric, proving that the map
 is well-defined.

For the converse result, we need to show that ⌥ is a well-
defined map. Given a quasi-ultrametric ũ

X

on a node set

X and a resolution � � 0, we first define the relation

x 
ũX(�) x

0 () ũ

X

(x, x0)  �, (21)

for all x, x

0 2 X . Notice that  
ũX(�) is a quasi-

equivalence relation as defined in Definition 1 for all � � 0.
The reflexivity property is implied by the identity property
of the quasi-ultrametric ũ

X

and transitivity is implied by
the fact that ũ

X

satisfies the strong triangle inequality. Fur-
thermore, definitions (9) and (10) are just reformulations
of (2) and (3) respectively, for the special case of the quasi-
equivalence defined in (21). Hence, Proposition 1 guar-
antees that ⌥(X, ũ

X

) = D̃

X

(�) = (D
X

(�), E
X

(�)) is a
quasi-partition for every resolution � � 0. In order to show
that ⌥ is well-defined, we need to show that these quasi-
partitions are nested, i.e. that D̃

X

satisfies (D̃1)-(D̃4).

The first boundary condition in (D̃1) is implied by (9) and
the identity property of ũ

X

. The second boundary condi-
tion in (D̃1) is implied by the fact that ũ

X

takes finite real
values on a finite domain since the node set X is finite.
Hence, any �0 satisfying

�0 � max
x,x

02X

ũ

X

(x, x0), (22)

is a valid candidate to show fulfillment of (D̃1).

To see that D̃
X

satisfies (D̃2) assume that for a resolution
�1 we have two nodes x, x0 2 X such that x ⇠

ũX(�1) x
0 as

in (9), then it follows that max
�

ũ

X

(x, x0), ũ
X

(x0
, x)

� 
�1. Thus, if we pick any �2 > �1 it is immediate that
max

�

ũ

X

(x, x0), ũ
X

(x0
, x)

�  �2 which by (9) implies
that x ⇠

ũX(�2) x
0.

Fulfillment of (D̃3) can be shown in a similar way as ful-
fillment of (D̃2). Given a scalar �1 � 0 and x, x

0 2 X , if
([x]

�1 , [x
0]
�1) 2 E

X

(�1) then by (10) we have that

min
x12[x]�1 ,x22[x0]�1

ũ

X

(x1, x2)  �1. (23)

From property (D̃2), we know that for all x 2 X , [x]
�1 ⇢

[x]
�2 for all �2 > �1. Hence, two things might hap-

pen. Either max(ũ
X

(x, x0), ũ
X

(x0
, x))  �2 in which case

[x]
�2 = [x0]

�2 or it might be that [x]
�2 6= [x0]

�2 but

min
x12[x]�2 ,x22[x0]�2

ũ

X

(x1, x2)  �1 < �2, (24)

which implies that ([x]
�2 , [x

0]
�2) 2 E

X

(�2). Consequently,
(D̃3) is satisfied.

Finally, to see that D̃
X

satisfies the right continuity condi-
tion (D̃4), for each � � 0 such that D̃

X

(�) 6= ({X}, ;) we
may define ✏(�) as any positive scalar satisfying

0 < ✏(�) < min
x,x

02X

s.t. ũX(x,x0)>�

ũ

X

(x, x0)� �, (25)
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where the finiteness of X ensures that ✏(�) is well-defined.
Hence, (9) and (10) guarantee that D̃

X

(�) = D̃

X

(�0)
for �

0 2 [�, � + ✏(�)]. For all other resolutions � such
that D̃

X

(�) = ({X}, ;), right continuity is trivially
satisfied since the quasi-dendrogram remains unchanged
for increasing resolutions. Consequently, ⌥(X, ũ

X

) is
a valid quasi-dendrogram for every quasi-ultrametric net-
work (X, ũ

X

), proving that ⌥ is well-defined.

In order to conclude the proof, we need to show that  �⌥
and ⌥ �  are the identities on Ũ and D̃, respectively.
To see why the former is true, pick any quasi-ultrametric
network (X, ũ

X

) and consider an arbitrary pair of nodes
x, x

0 2 X such that ũ
X

(x, x0) = �0. Also, consider the
ultrametric network  � ⌥(X, ũ

X

) := (X, ũ

⇤
X

). From (9)
and (10), in the quasi-dendrogram ⌥(X, ũ

X

) there is no
influence from x to x

0 for resolutions � < �0 and at reso-
lution � = �0 either an edge appears from [x]

�0 to [x0]
�0 ,

or both nodes merge into one single cluster. In any case,
when we apply  to the resulting quasi-dendrogram, we
obtain ũ

⇤
X

(x, x0) = �0. Since x, x

0 2 X were chosen arbi-
trarily, we have that ũ

X

= ũ

⇤
X

, showing that  � ⌥ is the
identity on Ũ . A similar argument shows that ⌥ �  is the
identity on D̃.

A.2. Proof of Proposition 2

For this proof, we introduce the concept of chain concate-
nation. Given two chains C(x, x0) = [x = x0, x1, ..., xl

=
x

0] and C(x0
, x

00) = [x0 = x

0
0, x

0
1, ..., x

0
l

0 = x

00] such that
the end point x0 of the first one coincides with the start-
ing point of the second one, define the concatenated chain
C(x, x0) ] C(x0

, x

00) as

C(x, x0) ] C(x0
, x

00)

:= [x = x0, . . . , xl

= x

0 = x

0
0, . . . , x

0
l

0 = x

00].
(26)

For the method H̃⇤ to be a properly defined hierarchical
quasi-clustering method, we need to establish that ũ⇤

X

is
a valid ultrametric. To see that ũ

⇤
X

(x, x0) = 0 if and
only if x = x

0, notice that when x = x

0, the chain
C(x, x) = [x, x] has null cost and when x 6= x

0 any chain
must contain at least one link with strictly positive cost. To
verify that the strong triangle inequality in (7) holds, let
C

⇤(x, x00) and C

⇤(x00
, x

0) be chains that achieve the min-
imum in (13) for ũ⇤

X

(x, x00) and ũ

⇤
X

(x00
, x

0), respectively.
The maximum cost in the concatenated chain C(x, x0) =
C

⇤(x, x00)]C

⇤(x00
, x

0) does not exceed the maximum cost
in each individual chain. Thus, while the maximum cost
may be smaller on a different chain, the chain C(x, x0) suf-
fices to bound ũ

⇤
X

(x, x0)  max
�

ũ

⇤
X

(x, x00), ũ⇤
X

(x00
, x

0)
�

as in (7).

To show fulfillment of Axiom (Ã1), pick an arbitrary
two-node network ~�2(↵,�) := ({p, q}, A

p,q

) with

A

p,q

(p, q) = ↵ and A

p,q

(q, p) = � for some ↵,� > 0 and
denote by ({p, q}, ũ⇤

p,q

) = H̃⇤(~�2(↵,�)). Then, we have
ũ

⇤
p,q

(p, q) = ↵ and ũ

⇤
p,q

(q, p) = � because there is only
one possible chain selection in each direction [cf. (13)]. To
prove that Axiom (Ã2) is satisfied consider arbitrary points
x, x

0 2 X and denote by C

⇤(x, x0) one chain achieving the
minimum chain cost in (13),

ũ

⇤
X

(x, x0) = max
i|xi2C

⇤(x,x0)
A(x

i

, x

i+1). (27)

Consider the transformed chain C

Y

(�(x),�(x0)) =
[�(x) = �(x0), . . . ,�(xl

) = �(x0)] in the space Y .
Since the map � : X ! Y reduces dissimilarities we
have that for all links in this chain A

Y

(�(x
i

),�(x
i+1)) 

A

X

(x
i

, x

i+1). Consequently,

max
i|�(xi)2CY (�(x),�(x0))

A

Y

(�(x
i

),�(x
i+1)) (28)

 max
i|xi2C

⇤(x,x0)
A

X

(x
i

, x

i+1).

Further note that the minimum chain cost ũ⇤
Y

(�(x),�(x0))
among all chains linking �(x) to �(x0) cannot exceed the
cost in the given chain C

Y

(�(x),�(x0)). Combining this
observation with the inequality in (28) it follows that

ũ

⇤
Y

(�(x),�(x0)) max
i|xi2C

⇤(x,x0)
A

X

(x
i

, x

i+1)= ũ

⇤
X

(x, x0),

(29)

where we also used (27) to write the equality. Expression
(29) ensures fulfillment of Axiom (Ã2), as wanted.

A.3. Proof of Theorem 2

In proving this theorem, the concept of separation of a net-
work is useful. Given an arbitrary network (X,A

X

), its
separation sep(X,A

X

) is defined as the minimum positive
dissimilarity in the network, that is

sep(X,A

X

) = min
x 6=x

0
A

X

(x, x0). (30)

The following auxiliary result is useful in showing Theo-
rem 2.

Lemma 1 A network N = (X,A

X

) and a positive con-
stant � are given. Then, for any pair of nodes x, x

0 2 X

whose minimum chain cost [cf. (13)] satisfies

ũ

⇤
X

(x, x0) � �, (31)

there exists a partition P

�

(x, x0) = {B
�

(x), B
�

(x0)} of
the node space X into blocks B

�

(x) and B

�

(x0) with x 2
B

�

(x) and x

0 2 B

�

(x0) such that for all points b 2 B

�

(x)
and b

0 2 B

�

(x0)

A

X

(b, b0) � �. (32)
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Proof: We prove this result by contradiction. If a parti-
tion P

�

(x, x0) = {B
�

(x), B
�

(x0)} with x 2 B

�

(x) and
x

0 2 B

�

(x) and satisfying (32) does not exist for all pairs
of points x, x

0 2 X satisfying (31), then there is at least
one pair of nodes x, x0 2 X satisfying (31) such that for all
partitions of X into two blocks P = {B,B

0} with x 2 B

and x

0 2 B

0 we can find at least a pair of elements b
P

2 B

and b

0
P

2 B

0 for which

A

X

(b
P

, b

0
P

) < �. (33)

Begin by considering the partition P1 = {B1, B
0
1} where

B1 = {x} and B

0
1 = X\{x}. Since (33) is true for all

partitions having x 2 B and x

0 2 B

0 and x is the unique
element of B1, there must exist a node b

0
P1

2 B

0
1 such that

A

X

(x, b0
P1
) < �. (34)

Hence, the chain C(x, b0
P1
) = [x, b0

P1
] composed of these

two nodes has cost smaller than �. Moreover, since
ũ

⇤
X

(x, b0
P1
) represents the minimum cost among all chains

C(x, b0
P1
) linking x to b

0
P1

, we can assert that

ũ

⇤
X

(x, b0
P1
)  A

X

(x, b0
P1
) < �. (35)

Consider now the partition P2 = {B2, B
0
2} where B2 =

{x, b0
P1
} and B

0
2 = X\B2. From (33), there must exist a

node b

0
P2

2 B

0
2 that satisfies at least one of the two follow-

ing conditions

A

X

(x, b0
P2
) < �, (36)

A

X

(b0
P1
, b

0
P2
) < �. (37)

If (36) is true, the chain C(x, b0
P2
) = [x, b0

P2
] has cost

smaller than �. If (37) is true, we combine the dissimi-
larity bound with the one in (34) to conclude that the chain
C(x, b0

P2
) = [x, b0

P1
, b

0
P2
] has cost smaller than �. In either

case we conclude that there exists a chain C(x, b0
P2
) link-

ing x to b

0
P2

whose cost is smaller than �. Therefore, the
minimum chain cost must satisfy

ũ

⇤
X

(x, b0
P2
) < �. (38)

Repeat the process by considering the partition P3 with
B3 = {x, b0

P1
, b

0
P2
} and B

0
3 = X\B3. As we did in arguing

(36)-(37) it must follow from (33) that there exists a point
b

0
P3

such that at least one of the dissimilarities A
X

(x, b0
P3
),

A

X

(b0
P1
, b

0
P3
), or A

X

(b0
P2
, b

0
P3
) is smaller than �. This ob-

servation implies that at least one of the chains [x, b0
P3
],

[x, b0
P1
, b

0
P3
], [x, b0

P2
, b

0
P3
], or [x, b0

P1
, b

0
P2
, b

0
P3
] has cost

smaller than � from where it follows that

ũ

⇤
X

(x, b0
P3
) < �. (39)

This recursive construction can be repeated n � 1 times to
obtain partitions P1, P2, ..., Pn�1 and corresponding nodes

b

0
P1
, b

0
P2
, ...b

0
Pn�1

such that the minimum chain cost satis-
fies

ũ

⇤
X

(x, b0
Pi
) < �, for all i. (40)

Observe now that the nodes b0
Pi

are distinct by construction
and distinct from x. Since there are n nodes in the network
it must be that x0 = b

0
Pk

for some i 2 {1, . . . , n � 1}. It
then follows from (40) that

ũ

⇤
X

(x, x0) < �. (41)

This is a contradiction because x, x

0 2 X were assumed to
satisfy (31). Thus, the assumption that (33) is true for all
partitions is incorrect. Hence, the claim that there exists
a partition P

�

(x, x0) = {B
�

(x), B
�

(x0)} satisfying (32)
must be true. ⌅

Returning to the main proof, given an arbitrary network
N = (X,A

X

) denote as (X, ũ

X

) = H̃(X,A

X

) the output
quasi-ultrametric resulting from application of an arbitrary
admissible quasi-clustering method H̃. We will show that
for all x, x0 2 X

ũ

⇤
X

(x, x0)  ũ

X

(x, x0)  ũ

⇤
X

(x, x0). (42)

To prove the rightmost inequality in (42) we begin by show-
ing that the dissimilarity function A

X

acts as an upper
bound on all admissible quasi-ultrametrics ũ

X

, i.e.

ũ

X

(x, x0)  A

X

(x, x0), (43)

for all x, x0 2 X . To see this, suppose A

X

(x, x0) = ↵

and A

X

(x0
, x) = �. Define the two-node network N

p,q

=
({p, q}, A

p,q

) where A

p,q

(p, q) = ↵ and A

p,q

(q, p) = �

and denote by ({p, q}, ũ
p,q

) = H̃(N
p,q

) the output of ap-
plying the method H̃ to the network N

p,q

. From axiom
(Ã1), we have H̃(N

p,q

) = N

p,q

, in particular

ũ

p,q

(p, q) = A

p,q

(p, q) = A

X

(x, x0). (44)

Moreover, notice that the map � : {p, q} ! X , where
�(p) = x and �(q) = x

0 is a dissimilarity reducing map,
i.e. it does not increase any dissimilarity, from N

p,q

to N .
Hence, from axiom (Ã2), we must have

ũ

p,q

(p, q) � ũ

X

(�(p),�(q)) = ũ

X

(x, x0). (45)

Substituting (44) in (45), we obtain (43).

Consider now an arbitrary chain C(x, x0) = [x =
x0, x1, . . . , xl

= x

0] linking nodes x and x

0. Since ũ

X

is a valid quasi-ultrametric, it satisfies the strong triangle
inequality (7). Thus, we have that

ũ

X

(x, x0)  max
i|xi2C(x,x0)

ũ

X

(x
i

, x

i+1)

 max
i|xi2C(x,x0)

A

X

(x
i

, x

i+1), (46)
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where the last inequality is implied by (43). Since by defi-
nition C(x, x0) is an arbitrary chain linking x to x

0, we can
minimize (46) over all such chains maintaining the validity
of the inequality,

ũ

X

(x, x0) min
C(x,x0)

max
i|xi2C(x,x0)

A

X

(x
i

, x

i+1)= ũ

⇤
X

(x, x0),

(47)
where the last equality is given by the definition of the di-
rected minimum chain cost (13). Thus, the rightmost in-
equality in (42) is proved.

To show the leftmost inequality in (42), consider an arbi-
trary pair of nodes x, x

0 2 X and fix � = ũ

⇤
X

(x, x0).
Then, by Lemma 1, there exists a partition P

�

(x, x0) =
{B

�

(x), B
�

(x0)} of the node space X into blocks B

�

(x)
and B

�

(x0) with x 2 B

�

(x) and x

0 2 B

�

(x0) such that for
all points b 2 B

�

(x) and b

0 2 B

�

(x0) we have

A

X

(b, b0) � �. (48)

Focus on a two-node network N

u,v

= ({u, v}, A
u,v

) with
A

u,v

(u, v) = � and A

u,v

(v, u) = s where s = sep(X,A

X

)

as defined in (30). Denote by ({u, v}, ũ
u,v

) = H̃(N
u,v

)

the output of applying the method H̃ to the network N

u,v

.
Notice that the map � : X ! {u, v} such that �(b) =
u for all b 2 B

�

(x) and �(b0) = v for all b0 2 B

�

(x0)
is dissimilarity reducing because, from (48), dissimilarities
mapped to dissimilarities equal to � in N

u,v

were originally
larger. Moreover, dissimilarities mapped into s cannot have
increased due to the definition of separation of a network
(30). From Axiom (Ã1),

ũ

u,v

(u, v) = A

u,v

(u, v) = �, (49)

since N

u,v

is a two-node network. Moreover, since � is
dissimilarity reducing, from (Ã2) we may assert that

ũ

X

(x, x0) � ũ

u,v

(�(x),�(x0)) = �, (50)

where we used (49) for the last equality. Recalling that
ũ

⇤
X

(x, x0) = � and substituting in (50) concludes the proof
of the leftmost inequality in (42).

Since both inequalities in (42) hold, we must have
ũ

⇤
X

(x, x0) = ũ

X

(x, x0) for all x, x0 2 X . Since this is true
for any arbitrary network N = (X,A

X

), it follows that the
admissible quasi-clustering method must be H̃ ⌘ H̃⇤.

A.4. The metric on N
Consider two networks N

X

, N
Y

2 N such that N
X

=
(X,A

X

) and N

Y

= (Y,A
Y

). A correspondence between
the sets X and Y is any subset R ✓ X ⇥ Y such that
⇡1(R) = X and ⇡2(R) = Y . Here, ⇡1 and ⇡2 are the
usual coordinate-wise projections. The distortion dis(R)
of a correspondence R between networks N

X

and N

Y

is

defined as

dis(R) := max
(x,y),(x0

,y

0)2R

|A
X

(x, x0)�A

Y

(y, y0)|.

The underlying notion of equality on N that we use is the
following: we say that networks N

X

and N

Y

are isomor-
phic or indistinguishable if and only if there exists a bijec-
tion � : X ! Y such that A

X

(x, x0) = A

Y

(�(x),�(x0))
for all x, x0 2 X . Given N

X

and N

Y

, we define the net-
work distance dN on N ⇥N as

dN
�

N

X

, N

Y

�

:=
1

2
min
R

dis(R), (51)

where R spans all correspondences between X and Y . The
structure of this distance is similar to that of the Gromov-
Hausdorff distance (Gromov, 2007) that is often used in the
context of compact metric spaces. In our context, it still
provides a legitimate distance on the collection N modulo
our chosen notion of isomorphism.

Theorem 4 The network distance defined in (51) is a legit-
imate metric on N modulo isomorphism of networks.

Proof: That dN is symmetric and non-negative is clear. As-
sume now that X and Y are isomorphic and let � : X ! Y

be a bijection providing this isomorphism. Then, consider
R

�

= {(x,�(x)), x 2 X}. Since � is a bijection, it is easy
to check that R

�

is a correspondence between X and Y .
Finally, by definition of �, A

X

(x, x0) = A

Y

(y, y0) for all
(x, y), (x0

, y

0) 2 R

�

. Hence

0  dN (X,Y )  1

2
dis(R

�

) = 0

and dN (X,Y ) = 0 follows.

The triangle inequality follows from the following obser-
vation: if R is a correspondence between X and Z and S

is a correspondence between Z and Y , then

T := {(x, y), |9z 2 Z with (x, z) 2 R, (z, y) 2 S} (52)

is a correspondence between X and Y . To show that T is
in fact a correspondence, we have to prove that for every
x 2 X there exists y 2 Y such that (x, y) 2 T . Similarly,
we must require that for every y 2 Y there exists x 2 X

such that (x, y) 2 T . To see this, pick an arbitrary x 2
X , by definition of R, there must exist z 2 Z such that
(x, z) 2 R. By definition of S, there must exist y 2 Y

such that (z, y) 2 S. Hence, there exists (x, y) 2 T for
every x 2 X . Similarly, the result can be proven for every
element of the set Y .

We can prove the triangle inequality in the following way.
Consider R and S to be the minimizing correspondences
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associated with distances dN (X,Z) and dN (Z, Y ) respec-
tively and define T as given by (52). Note that T need not
be the minimizing correspondence for dN (X,Y ). Hence,

dN (X,Y )  1

2
dis(T ). (53)

Furthermore, if we add and subtract A
Z

(z, z0) within the
absolute value defining the distortion of T in (53), where
z and z

0 are the elements in the definition of T (52), and
we use the fact that the maximum of the absolute value of
a sum is less than or equal to the sum of the maximums of
absolute values, we obtain

dN (X,Y )

 1

2
max

(x,z),(x0
,z

0)2R

|A
X

(x, x0)�A

Z

(z, z0)|

+
1

2
max

(z,y),(z0
,y

0)2S

|A
Z

(z, z0)�A

Y

(y, y0)|. (54)

By noting that the expression on the right hand side of (54)
is the sum of dN (X,Z) and dN (Z, Y ), the proof of the
triangle inequality is completed.

Finally, the most delicate part of the proof is checking that
dN (X,Y ) = 0 implies that X and Y are isomorphic. As-
sume that R is a correspondence such that A

X

(x, x0) =
A

Y

(y, y0) for all (x, y) and (x0
, y

0) both in R. Define
� : X ! Y in the following way: for each x 2 X let
Rx ✓ Y be the set of all y such that (x, y) 2 R. The fact
that R is a correspondence forces that Rx 6= ;. Hence, we
can choose any y in Rx and declare �(x) = y.

Define in the same way a function  : Y ! X . Notice that
then we forcibly have that A

X

(x, x0) = A

Y

(�(x),�(x0))
for all x, x0 2 X and also A

X

( (y), (y0)) = A

Y

(y, y0)
for all y, y0 2 Y .

To prove that � is injective, assume that x 6= x

0 but
�(x) = �(x0), then A

X

(x, x0) = A

Y

(�(x),�(x0)) = 0,
which contradicts our definition of networks. In a similar
manner one checks that  must also be injective.

So we have constructed two injections, one from X into Y ,
and one in the opposite direction. The Cantor-Bernstein-
Schroeder theorem now applies and guarantees that there
exists a bijection between X and Y . This immediately
forces X and Y to have the same cardinality, and in par-
ticular, it forces � (and  ) to be bijections. This concludes
the proof. ⌅

A.5. Proof of Theorem 3

Assume ⌘ = dN (N
X

, N

Y

) and let R be a correspon-
dence between X and Y such that dis(R) = 2⌘. Write
(X, ũ

X

) = H̃⇤(N
X

) and (Y, ũ
Y

) = H̃⇤(N
Y

). We
will prove that |ũ

X

(x, x0) � ũ

Y

(y, y0)|  2⌘ for all

(x, y), (x0
, y

0) 2 R which will imply the claim. Fix (x, y)
and (x0

, y

0) in R. Pick any x = x0, x1, . . . , xn

= x

0

in X such that max
i

A

X

(x
i

, x

i+1) = ũ

X

(x, x0). Choose
y0, y1, . . . , yn 2 Y so that (x

i

, y

i

) 2 R for all i =
0, 1, . . . , n. Then, by definition of ũ

Y

(y, y0) and the defi-
nition of ⌘:

ũ

Y

(y, y0)  max
i

A

Y

(y
i

, y

i+1)

 max
i

A

X

(x
i

, x

i+1) + 2⌘

= ũ

X

(x, x0) + 2⌘.

By symmetry, one also obtains ũ

X

(x, x0)  ũ

Y

(y, y0) +
2⌘, and the conclusion follows form the arbitrariness of
(x, y), (x0

, y

0) 2 R and the definition of dN .

A.6. Proof of Proposition 3

Fix any (X,A

X

) 2 N and write H̃⇤(X,A

X

) = (X, ũ

X

).
Pick any change of scale function  and write (X, ũ

 
X

) =
H̃⇤(X, (A

X

)). We need to prove that ũ 
X

=  (ũ
X

).
But this follows directly from the explicit structure given
in equation (13) and the fact that  is non-decreasing.

A.7. Further invariances: vertex permutations and the
metric closure

Note that Theorem 3 implies that DSL behaves well under
permutations of the vertices. The distance between a given
network and a second one obtained by permuting its nodes
is null. Thus, by Theorem 3, the distance between the cor-
responding output quasi-dendrograms must be null as well.
More precisely, if (X,A

X

) 2 N , H̃⇤(X,A

X

) = (X, ũ

X

),
and ' : X ! X is any bijection, then H̃⇤(X,A

X

�
(',')) = (X, ũ

X

� (',')). This means that permuting
the labels of points before applying DSL yields the same
result as permuting the labels a posteriori.

For any (X,A

X

) 2 N let Ā
X

be the maximal function sat-
isfying Ā

X

 A

X

pointwisely which in addition satisfies
the directed triangle inequality: Ā

X

(x, x0)  Ā

X

(x, x00)+
Ā

X

(x00
, x

0) for all x, x0
, x

00 2 X . Then, one can also prove
(similar to the proof of Theorem 18 in (Carlsson & Mémoli,
2010)) that H̃⇤(X,A

X

) = H̃⇤(X, Ā

X

) for all X 2 N .

A.8. Proof of Proposition 4

In Ch.6, Section 6.1 of (Gondran & Minoux, 2008) it is shown
that if A

X

is a dissimilarity matrix then its quasi inverse
A

⇤
X

in the dioid (R+ [ {+1},min,max) contains infor-
mation about the minimum infinity norm of chains in the
network. In fact, [A⇤

X

]
i,j

contains the minimum infinity
norm of all the chains connecting node i with node j. In
(Gondran & Minoux, 2008), the analysis is done for the sym-
metric case but its extension to the asymmetric case is im-



Hierarchical Quasi-Clustering Methods for Asymmetric Networks

mediate as we present here,

[A⇤
X

]
i,j

= min
C(xi,xj)

max
k|xk2C(xi,xj)

A

X

(x
k

, x

k+1). (55)

By comparing (55) with (13), we can state that

A

⇤
X

= ũ

⇤
X

. (56)

Hence, if we show that A⇤
X

= A

(n�1)
X

, then (56) implies
(16), completing the proof. Recall the quasi inverse A

⇤
X

definition in the dioid (R+ [ {+1},min,max) from Ch.
4, Definition 3.1.2 in (Gondran & Minoux, 2008)

A

⇤
X

= lim
k!1

I �A

X

�A

(2)
X

� ...�A

(k)
X

, (57)

where I has zeros in the diagonal and +1 in the off diag-
onal elements.

However, in our dioid algebra where the � operation is
idempotent, i.e. a � a = a for all a, it can be shown as
in Ch. 4, Proposition 3.1.1 in (Gondran & Minoux, 2008) that

I �A

X

�A

(2)
X

� ...�A

(k)
X

= (I �A

X

)(k). (58)

In our case, it is immediate that I�A

X

= A

X

, since diag-
onal elements are null in both matrices and the off diagonal
elements in I are +1. Hence, the minimization operation
� preserves A

X

. Consequently, (58) becomes

I �A

X

�A

(2)
X

� ...�A

(k)
X

= A

(k)
X

. (59)

Taking the limit to infinity in both sides of equality (59) and
using the quasi inverse definition (57), we get

A

⇤
X

= lim
k!1

A

(k)
X

. (60)

Finally, it can be shown as in Theorem 1 of Ch.4, Section
3.3 in (Gondran & Minoux, 2008) that A(n�1)

X

= A

(n)
X

, prov-
ing that the limit in (60) is well defined and, more impor-
tantly, that A⇤

X

= A

(n�1)
X

, as wanted.

A.9. Applications

The dissimilarity function A

S

of the migration network N

S

used in Section 4 of the paper is computed as follows. De-
note by M : S⇥S ! R+ the migration flow function given
by the U.S. census bureau in which M(s, s0) is the number
of individuals that migrated from state s to s

0 in year 2011
and M(s, s) = 0 for all s, s0 2 S. We then construct the
asymmetric network N

S

= (S,A
S

) with node set S and
dissimilarities A

S

such that A
S

(s, s) = 0 for all s 2 S and

A

S

(s, s0) = f

✓

M(s, s0)
P

i

M(s
i

, s

0)

◆

, (61)

for all s 6= s

0 2 S where f : [0, 1) ! R++

is a given decreasing function. The normalization
M(s, s0)/

P

i

M(s
i

, s

0) in (61) can be interpreted as the
probability that an immigrant to state s

0 comes from state
s. The role of the decreasing function f is to transform
the similarities M(s, s0)/

P

i

M(s
i

, s

0) into corresponding
dissimilarities. For the experiments here we use f(x) =
1�x. However, due to the scale invariance property of DSL
[cf. Proposition 3] , the particular form of f is of little con-
sequence to our analysis. Indeed, the influence structure
between blocks of states obtained when quasi-clustering
the network N

S

is independent of the particular choice of
the decreasing function f .

In Fig. 4 we present the dendrogram component D⇤
S

of
the quasi-dendrogram D̃

⇤
S

= (D⇤
S

, E

⇤
S

) analyzed in Sec-
tion 4. Some identifiable clusters are highlighted in color
to illustrate the influence of geographical proximity in mi-
grational preference. E.g., the blue cluster corresponds to
the six states in the region of New England, the red cluster
contains the remaining East Coast states with the exception
of Delaware, and the green cluster corresponds to states in
an extended West Coast plus Texas.

As a second illustrative example of the DSL method, we
quasi-cluster a network that records interactions between
sectors of the economy. The Bureau of Economic Analy-
sis of the U.S. Department of Commerce publishes a yearly
table of inputs and outputs organized by economic sectors
(Bureau of Economic Analysis, 2011). This table records how
economic sectors interact to generate gross domestic prod-
uct. We focus on the section of uses of this table which
shows the inputs to production. More precisely, we are
given a set I of 61 industrial sectors as defined by the North
American Industry Classification System (NAICS) and a
function U : I⇥I ! R+ where U(i, i0) for all i, i0 2 I rep-
resents how much of the production of sector i, expressed
in dollars, is used as an input of sector i

0. The function
U should be interpreted as a measure of directed closeness
between two sectors. Thus, we define the network of uses
N

I

= (I, A
I

) where the dissimilarity function A

I

satisfies
A

I

(i, i) = 0 and, for i 6= i

0 2 I , is given by

A

I

(i, i0) = f

✓

U(i, i0)
P

k

U(i
k

, i

0)

◆

, (62)

where f : [0, 1) ! R++ is a given decreasing function.
The normalization U(i, i0)/

P

k

U(i
k

, i

0) in (62) can be in-
terpreted as the probability that an input dollar to produc-
tive sector i0 comes from sector i. In this way, we focus
on the combination of inputs of a sector rather than the size
of the economic sector itself. That is, a small dissimilarity
from sector i to sector i0 implies that sector i0 highly relies
on the use of sector i output as an input for its own pro-
duction. Notice that U(i, i) for i 2 I is generally positive,
i.e., a sector uses outputs of its own production as inputs
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Figure 4. Dendrogram component D⇤
S of the quasi-dendrogram D̃

⇤
S = (D⇤

S , E
⇤
S). The clustering of states is highly influenced by

geographical proximity.

Table 1. Code and description of industrial sectors
Code Industrial Sector
OG Oil and gas extraction
CO Construction
PC Petroleum and coal products
WH Wholesale trade
FR Federal Reserve banks and credit intermediation
SC Securities, commodity contracts, and investments
RA Real estate
RL Rental and leasing serv. and lessors of intang. assets
MP Misc. professional, scientific, and technical services
AS Administrative and support services

in other processes. Consequently, if for a given sector we
sum the input proportion from every other sector, we obtain
a number less than 1. The role of the decreasing function
f is to transform the similarities U(i, i0)/

P

k

U(i
k

, i

0) into
corresponding dissimilarities. As in the previous applica-
tion, we use f(x) = 1 � x, though the particular form of
f is of little consequence to the analysis since DSL is scale
invariant [cf. Proposition 3].

The outcome of applying the DSL quasi-clustering method
H̃⇤ with output quasi-ultrametrics defined in (13) to the
network N

I

is computed with the algorithmic formula in
(16). As we did with the migration network, in order to fa-
cilitate understanding we present quasi-partitions obtained
by restricting the output quasi-ultrametric to a subset of
nodes. In Fig. 5 we present four quasi-partitions focusing
on ten economic sectors; see Table 1. We present quasi-
partitions D̃⇤

I

(�) for four different resolutions �⇤1 = 0.884,
�

⇤
2 = 0.886, �⇤3 = 0.894, and �

⇤
4 = 0.899.

The edge component E⇤
I

of the quasi-dendrogram D̃

⇤
I

cap-
tures the asymmetric influence between clusters. E.g. in
the quasi-partition in Fig. 5 for resolution �

⇤
1 = 0.884 ev-

ery cluster is a singleton since the resolution is smaller than
that of the first merging. However, the influence structure

reveals an asymmetry in the dependence between the eco-
nomic sectors. At this resolution the professional service
sector MP has influence over every other sector except for
the rental services RL as depicted by the eight arrows leav-
ing the MP sector. No sector has influence over MP at this
resolution since this would imply, except for RL, the for-
mation of a non-singleton cluster. The influence of MP
reaches primary sectors as OG, secondary sectors as PC
and tertiary sectors as AS or SC. The versatility of MP’s
influence can be explained by the diversity of services con-
densed in this economic sector, e.g. civil engineering and
architectural services are demanded by CO, production en-
gineering by PC and financial consulting by SC. For the
rest of the influence pattern, we can observe an influence
of CO over OG mainly due to the construction and mainte-
nance of pipelines, which in turn influences PC due to the
provision of crude oil for refining. Thus, from the transitiv-
ity (QP2) property of quasi-partitions we have an influence
edge from CO to PC. The sectors CO, PC and OG influ-
ence the support service sector AS. Moreover, the service
sectors RA, SC and FR have a totally hierarchical influence
structure where SC has influence over the other two and FR
has influence over RA. Since these three nodes remain as
singleton clusters for the resolutions studied, the influence
structure described is preserved for higher resolutions as
it should be from the influence hierarchy property of the
edge set E⇤

S

(�) stated in condition (D̃3) in the definition of
quasi-dendrogram in Section 3.1.

At resolution �

⇤
2 = 0.886, we see that the sectors OG-PC-

CO have formed a three-node cluster depicted in red that
influences AS. At this resolution, the influence edge from
MP to RL appears and, thus, MP gains influence over every
other cluster in the quasi-partition including the three-node
cluster. At resolution � = 0.887 the service sectors AS
and MP join the cluster OG-PC-CO and for �

⇤
3 = 0.894

we have this five-node cluster influencing the other five
singleton clusters plus the mentioned hierarchical structure
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Figure 5. Directed single linkage quasi-clustering method applied to a portion of the sectors of the economy. The edges define a partial
order among the blocks of every quasi-partition.

among SC, FR, and RA and an influence edge from WH
to RL. When we increase the resolution to �

⇤
4 = 0.899 we

see that RL and WH have joined the main cluster that influ-
ences the other three singleton clusters. If we keep increas-
ing the resolution, we would see at resolution � = 0.900
the sectors SC and FR joining the main cluster which would
have influence over RA the only other cluster in the quasi-
partition. Finally, at resolution � = 0.909, RA joins
the main cluster and the quasi-partition contains only one
block.

The influence structure between clusters at any given res-
olution defines a partial order. More precisely, for every
resolution �, the edge set E⇤

I

(�) defines a partial order be-
tween the blocks given by the partition D

⇤
I

(�). We can
use this partial order to evaluate the relative importance
of different clusters by stating that more important sectors
have influence over less important ones. E.g., at resolution
�

⇤
1 = 0.884 we have that MP is more important than every

other sector except for RL, which is incomparable at this
resolution. There are three totally ordered chains that have
MP as the most important sector at this resolution. The
first one contains five sectors which are, in decreasing or-
der of importance, MP, CO, OG, PC, and AS. The second
one is comprised of MP, SC, FR, and RA and the last one
only contains MP and WH. At resolution �

⇤
2 = 0.886 we

observe that the three-node cluster OG-PC-CO, although
it contains more nodes than any other cluster, it is not the
most important of the quasi-partition. Instead, the singleton
cluster MP has influence over the three-node cluster and,
on top of that, is comparable with every other cluster in
the quasi-partition. From resolution �

⇤
3 = 0.894 onwards,

after MP joins the red cluster, the cluster with the largest
number of nodes coincides with the most important of the
quasi-partition. At resolution �

⇤
4 = 0.899 we have a total

order among the four clusters of the quasi-partition. This is
not true for the other three depicted quasi-partitions.

As a further illustration of the quasi-clustering method H̃⇤,
we apply this method to the network N

C

= (C,A
C

) of
consolidated industrial sectors (Bureau of Economic Analy-

Table 2. Code and description of consolidated industrial sectors
Code Consolidated Industrial Sector
AGR Agriculture, forestry, fishing, and hunting
MIN Mining
UTI Utilities
CON Construction
MAN Manufacturing
WHO Wholesale trade
RET Retail trade
TRA Transportation and warehousing
INF Information
FIR Finance, insurance, real estate, rental, and leasing
PRO Professional and business services
EHS Educational services, health care, and social assistance
AER Arts, entertain., recreation, accomm., and food serv.
OSE Other services, except government

sis, 2011) where |C| = 14 – see Table 2 – instead of the
original 61 sectors. Dissimilarity function A

C

is analogous
to A

I

but computed for the consolidated sectors. Of the
output quasi-dendrogram D̃

⇤
C

= (D⇤
C

, E

⇤
C

), in Fig. 6-(a)
we show the dendrogram component D⇤

C

and in Fig. 6-(b)
we depict the quasi-partitions D̃

⇤
C

(�⇤⇤
i

) for �⇤⇤1 = 0.787,
�

⇤⇤
2 = 0.845, �⇤⇤3 = 0.868, �⇤⇤4 = 0.929, and �

⇤⇤
5 = 0.933.

The reason we use the consolidated network N

C

is to facil-
itate the visualization of quasi-partitions that capture every
sector of the economy instead of only ten particular sectors
as in the previous application.

The quasi-dendrogram D̃

⇤
C

captures the asymmetric influ-
ences between clusters of industrial sectors at every res-
olution. E.g., at resolution �

⇤⇤
1 = 0.787 the dendrogram

D

⇤
C

in Fig. 6-(a) informs us that every industrial sector
forms its own singleton cluster. However, this simplis-
tic representation, characteristic of clustering methods, ig-
nores the asymmetric relations between clusters at resolu-
tion �

⇤⇤
1 . These influence relations are formalized in the

quasi-dendrogram D̃

⇤
C

with the introduction of the edge
set E⇤

C

(�) for every resolution �. In particular, for �⇤⇤1 we
see in Fig. 6-(b) that the sectors of ‘Finance, insurance,
real estate, rental, and leasing’ (FIR) and ‘Manufacturing’
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Figure 6. (a) Dendrogram component D⇤
C of the quasi-dendrogram D̃

⇤
C = (D⇤

C , E
⇤
C). Output of the DSL quasi-clustering method H̃⇤

when applied to the network NC . (b) Quasi-partitions. Given by the specification of the quasi-dendrogram D̃

⇤
C at a particular resolution

D̃

⇤
C(�

⇤⇤
k ) for k = 1, . . . , 5.
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(MAN) combined have influence over the remaining 12
sectors. More precisely, the influence of FIR is concen-
trated on the service and commercialization sectors of the
economy whereas the influence of MAN is concentrated
on primary sectors, transportation, and construction. Fur-
thermore, note that due to the transitivity (QP2) property
of quasi-partitions defined in Section 3, the influence of
FIR over ‘Professional and business services’ (PRO) im-
plies influence of FIR over every sector influenced by PRO.
The influence among the remaining 11 sectors, i.e. ex-
cluding MAN, FIR and PRO, is minimal, with the ‘Min-
ing’ (MIN) sector influencing the ‘Utilities’ (UTI) sector.
This influence is promoted by the influence of the ‘Oil and
gas extraction’ (OG) subsector of MIN over the utilities
sector. At resolution �

⇤⇤
2 = 0.845, FIR and PRO form

one cluster, depicted in red, and they add an influence to
the ‘Construction’ (CON) sector apart from the previously
formed influences that must persist due to the influence
hierarchy property of the edge set E

⇤
C

(�) stated in con-
dition (D̃3) in the definition of quasi-dendrogram in Sec-
tion 3.1. The manufacturing sector also intensifies its in-
fluences by reaching the commercialization sectors ‘Retail
trade’ (RET) and ‘Wholesale trade’ (WHO) and the ser-
vice sector ‘Educational services, health care, and social
assistance’ (EHS). The influence among the rest of the sec-
tors is still scarce with the only addition of the influence
of ‘Transportation and warehousing’ (TRA) over UTI. At
resolution �

⇤⇤
3 = 0.868 we see that mining MIN and man-

ufacturing MAN form their own cluster, depicted in green.
The previously formed red cluster has influence over ev-
ery other cluster in the quasi-partition, including the green
one. At resolution �

⇤⇤
4 = 0.929, the red and green clusters

become one, composed of four original sectors. Also, the
influence of the transportation TRA sector over the rest is
intensified with the appearance of edges to the primary sec-
tor ‘Agriculture, forestry, fishing, and hunting’ (AGR), the
construction CON sector and the commercialization sectors
RET and WHO. Finally, at resolution �

⇤⇤
5 = 0.933 there

is one clear main cluster depicted in red and composed of
seven sectors spanning the primary, secondary, and tertiary
sectors of the economy. This main cluster influences ev-

ery other singleton cluster. The only other influence in the
quasi-partition D̃

⇤
C

(0.933) is the one of RET over CON.
For increasing resolutions, the singleton clusters join the
main red cluster until at resolution � = 0.988 the 14 sec-
tors form one single cluster.

The influence structure at every resolution induces a partial
order in the blocks of the corresponding quasi-partition. As
done in previous examples, we can interpret this partial or-
der as a relative importance ordering. E.g., we can say that
at resolution �

⇤⇤
1 = 0.787, MAN is more important that

MIN which in turn is more important than UTI which is
less important than PRO. However, PRO and MAN are not
comparable at this resolution. At resolution �

⇤⇤
4 = 0.929,

after the red and green clusters have merged together at
resolution � = 0.869, we depict the combined cluster as
red. This representation is not arbitrary, the red color of
the combined cluster is inherited from the most important
of the two component cluster. The fact that the red clus-
ter is more important than the green one is represented by
the edge from the former to the latter in the quasi-partition
at resolution �

⇤⇤
3 . In this sense, the edge component E⇤

C

of the quasi-dendrogram formalizes a hierarchical struc-
ture between clusters at a fixed resolution apart from the
hierarchical structure across resolutions given by the den-
drogram component D⇤

C

of the quasi-dendrogram. E.g., if
we focus only on the dendrogram D

⇤
C

in Fig. 6-(a), the
nodes MIN and MAN seem to play the same role. How-
ever, when looking at the quasi-partitions at resolutions �⇤⇤1
and �

⇤⇤
2 , it is clear that MAN has influence over a larger set

of nodes than MIN and hence plays a more important role
in the clustering for increasing resolutions. Indeed, if we
delete the three nodes with the strongest influence struc-
ture, namely PRO, FIR, and MAN, and apply the quasi-
clustering method H̃⇤ on the remaining 11 nodes, the first
merging occurs between the mining MIN and utilities UTI
sectors at � = 0.960. At this same resolution, in the orig-
inal dendrogram component in Fig. 6-(a), a main cluster
composed of 12 nodes only excluding ‘Other services, ex-
cept government’ (OSE) and EHS is formed. This indicates
that by removing influential sectors of the economy, the
tendency to cluster of the remaining sectors is decreased.


