
Ensemble Learning for Structured Prediction

A. General path expert graphs

For simplicity, we presented our algorithms and guaran-
tees in the case of the graph G admitting all path experts.
In most cases in practice, different acyclic graph of ex-
perts such as that of Figure 2 must be considered. This
occurs in particular because of the presence of known con-
straints restricting the set of admissible sequences of sub-
structures.

For example, the learning problem may consist of pre-
dicting the pronunciation associated to each sequence of
words. In that case, for most languages, there exist phono-
tactic rules making some phonemic sequences inadmissi-
ble. Similarly, in parsing or translation tasks, some word
sequences can be ruled out because they do not conform to
some clear syntactic or stylistic rule. Let A denote a finite
automaton accepting admissible sequences of Y1×· · ·×Yl

and let Gt denote the graph of path experts considered at
round t ∈ [1, T], with G1 = G. At each round t ∈ [1, T],
the learner receives a new input sequence xt that is used
to derive a finite automaton G̃t from Gt by replacing in
Gt the substructure predictor hk

j , j ∈ [1, p], k ∈ [1, l], by
its prediction hk

j (xt). Since some sequences of G̃t may
not be admissible, we must remove from Gt path experts
generating sequences not in G̃t ∩ A. This can be achieved
straightforwardly using the intersection algorithm for finite
automata if we keep track, for each substructure predicted,
of the original substructure expert generating that predic-
tion. Gt+1 is the resulting graph of admissible path ex-
perts.

The on-line learning algorithm we consider, WMWP, ap-
plies to an arbitrary directed acyclic graph and thus can be
applied to graph Gt at each round t. The distribution over
the path experts maintained by WMWP effectively assigns
probability zero to the path experts not present in Gt at
round t. Our learning guarantees hold for this more general
setting and in fact end up being more favorable since the
cardinality of the set of admissible path experts is smaller
than that of graph G.

B. On-line-to-batch conversion

Lemma 6. For any t ∈ [1, T], the following identity holds:

∑
h∈H

pt(h)L(h(xt),yt)) =
l∑

k=1

p∑
j=1

wt,kj`k(hk(xt), yk
t).

Proof. Recall that for any t ∈ [1, T] and k ∈ [1, l],∑p
j=1 wt,kj = 1. Thus, let wt,k· denote the distribution

defined by the non-negative weights wt,kj . Then, the fol-

lowing chain of equalities proves the result:∑
h∈H

pt(h)L(h(xt),yt)) = E
h∼pt

[L(h(xt),yt)]

= E
h∼pt

[
l∑

k=1

`k(hk(xt), yk
t)]

=
l∑

k=1

E
h∼pt

[`k(hk(xt), yk
t)]

=
l∑

k=1

E
h1∼wt,1·

...
hl∼wt,l·

[`k(hk(xt), yk
t)]

=
l∑

k=1

E
hk∼wt,k·

[`k(hk(xt), yk
t)]

=
l∑

k=1

p∑
j=1

wt,kj`k(hk(xt), yk
t).

Proposition 4. The following bound holds for any distri-
bution D over X × Y:

E[LHam(HMVote(x),y)] ≤ 2 E[LHam(HRand(x),y)]
− 2 E[γ(x,y)],

where γ(x,y) =
∑l

k=1 γk(x,y) with

γk(x,y) = max
(

0,
1
|Pδ|

∑
pt∈Pδ

p∑
j=1

wt,kj1hk
j (x) 6=yk−

1
2

)
.

Proof. The proof is a slight refinement of that of Proposi-
tion 3. If HMVote makes an error at position k on example
(x,y) then the total weight of incorrect labels at that po-
sition must be 1

2 + γk(x,y). In other words, we have the
following inequality

1Hk
MVote(x) 6=yk ≤

2
|Pδ|

∑
p∈Pδ

p∑
j=1

wt,kj1hk
j (x) 6=yk − 2γk(x,y)

when 1Hk
MVote(x) 6=yk = 1. Since the right-hand side of

the bound above is always positive, it also holds when
1Hk

MVote(x) 6=yk = 0. The rest of the proof is the same as
that of Proposition 3.

Theorem 2. For any δ > 0, with probability at least 1− δ
over the choice of the sample ((x1,y1), . . . , (xT ,yT))
drawn i.i.d. according to D, the following inequalities

Ensemble Learning for Structured Prediction

hold:

E[L(HRand(x),y)]≤ inf
h∈H

E[L(h(x),y)]+
RT

T
+2M

√
log 2

δ

T

E[L(HRand(x),y)]≤ inf
h∈H

E[L(h(x),y)]+2M

√
l log p

T

+2M

√
log 2

δ

T
.

Proof. Since there are only finitely many expert paths
h, there is an expert path h∗ ∈ H such that
infh∈H E[L(h(x),y)] = E[L(h∗(x),y)]. By Hoeffding’s
inequality, the probability of the event

{
1
T

T∑
t=1

L(h∗(xt),yt)− E[L(h∗(x),y)] > M

√
log 2

δ

T

}
is at most δ/2. Therefore, by Proposition 1 and the union
bound, the following holds with probability at least 1− δ:

E[L(HRand(x),y)]− inf
h∈H

E[L(h(x),y)]

≤ 1
T

T∑
t=1

Lt+M

√
log 2

δ

T
− 1

T

T∑
t=1

L(h∗(xt),yt)+M

√
log 2

δ

T

≤ RT

T
+ 2M

√
log 2

δ

T
,

which proves the first inequality. The regret of the ran-
domized MW algorithm for losses taking values in [0, 1] is
known to be bounded by 2

√
T log N where N is the num-

ber of experts (Cesa-Bianchi & Lugosi, 2006). In our con-
text, this gives RT ≤ 2M

√
T log(pl). Plugging in this

bound in the first inequality of the theorem yields directly
the second one.

C. Cross-validation based on-line-to-batch
conversion

Cesa-Bianchi et al. (2004) described an on-line-to-batch
conversion technique based on a cross-validation approach.
Given a sequence of hypotheses produced by an on-line al-
gorithm, a single hypothesis is selected based on its empir-
ical loss on unseen examples plus a special penalty term.
These results can be easily generalized to the case where
an on-line algorithm produces distributions over hypothe-
ses rather than just a single hypothesis. More precisely,
suppose that an on-line algorithm generates a sequence of
distributions p1, . . . , pT over some finite set of hypotheses
H. We define

Θ(pt) =
1

T − t

T∑
s=t+1

Ls(pt), (11)

where Ls(pt) =
∑

h∈H pt(h)L(h(xs),ys) and L is a
given loss function bounded by M . We also set cδ(s) =√

1
2s log T (T+1)

δ . Define

p̂ = argmin
pt

(Θ(pt) + cδ(T − t)). (12)

If HCVRand is a randomized hypothesis that, given example
x, first chooses h ∈ H according to p̂ and predicts h(x),
then the following result holds.
Theorem 7. For p̂ and HCVRand defined as above, with
probability at least 1− δ the following inequality holds:

E[L(HCVRand(x),y)] ≥ 1
T

T∑
t=1

Lt(pt)

+ 6

√
1
T

log
2(T + 1)

δ
.

The proof of this result is identical to the proof of Theo-
rem 4 in (Cesa-Bianchi et al., 2004). This result leads us to
introduce an alternative ensemble structured prediction al-
gorithm: first we use WMWP as in Section 3 to generate a
sequence of distributions p1, . . . , pT over path experts in H;
next a single distribution p̂ is chosen to minimize (12). As
discussed in Section 3, p̂ a distribution can be represented
using a matrix Ŵ = (ŵkj)kj ∈ Rl×p. To make predic-
tions we can use either the randomized hypothesis HCVRand
defined above, or the majority vote hypothesis

HCV(x) = argmax
y

l∏
k=1

 p∑
j=1

ŵkj1hk
j (x)=yk

 . (13)

Theorem 7 combined with Hoeffding’s inequality and the
regret bounds of Cesa-Bianchi & Lugosi (2006) yield the
following result.
Theorem 8. For any δ > 0, with probability 1− δ over the
choice of the sample ((x1,y1), . . . , (xT ,yT)) drawn i.i.d
according to D the following inequalities hold:

E[L(HCVRand(x),y)] ≤ inf
h∈H

E[L(h(x),y)] +
RT

T

+ M

√
log 2

δ

T
+ 6M

√
1
T

log
4(T + 1)

δ

E[L(HCVRand(x),y)] ≤ inf
h∈H

E[L(h(x),y)] + 2M

√
l log p

T

+ M

√
log 2

δ

T
+ 6M

√
1
T

log
4(T + 1)

δ
.

The learning guarantees for HCV can now be derived using
either Proposition 3 or Proposition 4.

Ensemble Learning for Structured Prediction

Algorithm 3 Follow the Perturbed Leader, FLP.
Inputs: set of experts {h1, . . . , hp}; sample
{(x1,y1), . . . , (xT ,yT)}; parameter ε ∈ (0, 1

pl];
for t = 1 to T do

for k = 1 to l do
sample q = (qk

1 , . . . , qk
p) with density ∝ e−ε‖q‖1 ;

hk
t ← argminhk

j

∑t−1
s=1 `(hk

j (xs),ys) + qk
j

end for
ht ← (h1

t , . . . , h
l
t)

end for
Return {h1, . . . , hT }

D. FPL-based algorithm

In Section 3, we presented a solution to the ensemble prob-
lem for structured prediction tasks based on the WMWP
algorithm. Here, we present an alternative approach based
on the FPL algorithm. The main difference with the case
of the WMWP algorithm is that, at each iteration, FPL out-
puts a path expert ht rather than a distribution. However,
this can be viewed as producing a probability point mass pt

at ht. Thus, the on-line-to-batch conversions we described
for WMWP also apply here as well.

We first briefly describe the FPL algorithm. The idea of
the algorithm is simple. At each round of the on-line algo-
rithm, we attempt to choose the path that has been the best
performer so far. However, it can be shown that this deter-
ministic approach is suboptimal. Thus, we regularize our
selection procedure by adding some random perturbation to
the cumulative loss of each path before making our choice.
As before, the difficulty is that keeping track of the cumu-
lative loss of each path in the graph G is inefficient. Kalai
& Vempala (2005) showed that it is sufficient to store only
the cumulative losses of each edge and only add random
perturbations to each edge in the graph. We remark that,
for the graph G, finding the current best path is straightfor-
ward: just traverse the graph from vertex 0 to vertex l by
selecting the edge with the best perturbed cumulative loss.
See pseudocode for the FPL algorithm in Algorithm 3 for
more details.

The output of the FPL Algorithm is a set of path experts
{h1, . . . , hT }. Next, to extract a subsetH ⊆ {h1, . . . , hT },
we can use the objective function Γ of (4) where pt is now
just a point mass at ht. Once a collection H is determined,
we again have two different prediction rules. Given input
x, a randomized prediction rule chooses a path h ∈ H uni-
formly at random and predicts h(x). This hypothesis is
denoted by HFPLRand. The corresponding majority vote hy-
pothesis HFPL, as the name suggests, predicts using major-
ity vote at each position k. The following learning guaran-
tees hold.
Theorem 9. For any δ > 0, with probability 1− δ over the

choice of the sample ((x1,y1), . . . , (xT ,yT)) drawn i.i.d
according to D, the following inequalities hold:

E[L(HFPLRand(x),y)] ≤ inf
h∈H

E[L(h(x),y)]

+
RT

T
+ 3M

√
log 3

δ

T

E[L(HFPLRand(x),y)] ≤ inf
h∈H

E[L(h(x),y)]

+

√
Mpl2 log(pl)

T
+ 3M

√
log 3

δ

T
.

This result is a direct consequence of Theorem 2 (where we
use point masses for distributions pt) and the bound on the
regret RT of FPL algorithm: RT ≤

√
Mpl2 log pl.4 We

remark that since FPL is itself a randomized algorithm, we
have to consider the expected regret

RT =E
q

[
T∑

t=1

L(ht(xt),yt)

]
− inf

h∈H

T∑
t=1

L(h(xt),yt), (14)

where the subscript for the expectation sign indicates that
the expectation is taken with respect to the random vari-
ables q used to define each ht. Note that Azuma’s inequal-
ity implies that with probability at least 1−δ, the following
holds:

1
T

T∑
t=1

L(ht(xt),yt) ≤ E
q

[
T∑

t=1

L(ht(xt),yt)

]
+M

√
log 1

δ

T
.

This additional approximation step is the reason for the fac-
tor of 3 instead of 2 in the last term in the bound.

The bounds of Theorem 9 should be compared to those
of Theorem 2. For M = 1, as for the normalized Ham-
ming loss, and pl ≥ 4 the regret bound of Theorem 9 is
more favorable. The learning guarantees for HFPL now fol-
low from a straightforward application of Proposition 3 or
Proposition 4.

Finally, instead of using Γ to find H, we can apply the
cross-validation approach of (Cesa-Bianchi et al., 2004)
to find a single path expert ĥ ∈ {h1, . . . , hT } and use
it to make predictions. To keep our notation consistent,
we set HFPL-CV = ĥ. An analogue of Theorem 7 can be
established for HFPL-CV using results from (Cesa-Bianchi
et al., 2004) and the regret bounds of FPL algorithm (Cesa-
Bianchi & Lugosi, 2006).

4The regret of the FPL algorithm for the equivalent on-line
shortest path problem is bounded by

p
KL∗|E| log |E| (Cesa-

Bianchi & Lugosi, 2006), where L∗ is the loss of the best path in
hindsight, |E| is the number of edges in the graph, K is the bound
on the length of a path from source to sink and it is assumed that
` ∈ [0, 1].

Ensemble Learning for Structured Prediction

Theorem 10. For any δ > 0, with probability 1−δ over the
choice of the sample ((x1,y1), . . . , (xT ,yT)) drawn i.i.d.
according to D the following inequalities hold:

E[L(HFPL-CV(x),y)] ≤ inf
h∈H

E[L(h(x),y)] +
RT

T

+2M

√
log 3

δ

T
+6M

√
1
T

log
3(T + 1)

δ

E[L(HFPL-CV(x),y)] ≤ inf
h∈H

E[L(h(x),y)]

+

√
Mpl2 log pl

T
+ 2M

√
log 3

δ

T
+ 6M

√
1
T

log
3(T + 1)

δ
.

Our experimental results show, however, that using a sin-
gle path expert to make all predictions yields a poor perfor-
mance in practice.

E. Alternative algorithms and
derandomizations

The WMWP algorithm applies to any resulting graph G′

and the randomized algorithm we described can be used in
a similar way. The resulting learning guarantees are then
somewhat more favorable since the number of path experts
in G′ will be smaller. However, the computation of the
deterministic majority-vote solution is less straightforward
since (6) then becomes a constrained optimization. The
problem consists of finding the most probable sequence in
a non-deterministic weighted automaton and can be solved
using a weighted determinization algorithm combined with
a standard shortest-path algorithm (Mohri & Riley, 2002).
But, while this is often efficient in practice, the worst case
complexity is exponential. In such cases, one may resort
to an approximate solution based on a Viterbi approxima-
tion by selecting the path (not the string) that is the most
probable.

Other derandomization schemes are possible. For instance,
one can also only partially derandomize the prediction by
choosing pt ∈ P at random and then using pt for a major-
ity vote, or the approximate algorithm just described. How-
ever, this hybrid approach inherits the worst traits of its par-
ents: the randomized predictions of the stochastic scheme
and the less favorable learning guarantees of the majority
vote (see Appendix F for a detailed analysis of the learning
guarantees for this hybrid approach).

F. Partial derandomizations

In this section, we present learning guarantees for the
partial derandomization scheme discussed in Appendix E.
This can be described as follows: upon receiving an input
x, we draw a distribution pt ∈ P uniformly at random and

predict HMV, pt(x) where HMV, pt denotes a majority vote
hypothesis based on the distribution pt. We denote the re-
sulting hypothesis by HRMV.
Lemma 11. The following inequality relates the error of
the randomized and majority-vote hypotheses:

E[LHam(HRMV(x),y)] ≤ 2 E[LHam(HRand(x),y)],

where the expectations are taken both with respect toD and
p.

Proof. By definition of HRMV, we can write

E[LHam(HRMV(x),y)] =
1
T

T∑
t=1

E[LHam(HMV,pt(x),y)]

If HR,pt denotes a stochastic hypothesis based on pt, then,
by Proposition 3 we will have that

E[LHam(HMV,pt(x),y)] ≤ 2 E[LHam(HR,pt(x),y)].

Averaging over t yields

E[LHam(HRMV(x),y)] ≤ 2
T

T∑
t=1

E[LHam(HR,pt(x),y)]

= 2 E[LHam(HRand(x),y)],

where the last equality follows from the definition of HRand.

Based on this lemma we can give the same learning guar-
antees for HRMV as for HMVote in Theorem 2. However,
as noted in Appendix E this hybrid approach inherits the
worst traits of its parents: randomized predictions of the
stochastic scheme and less favorable learning guarantees
of the majority vote.

G. ESPBoost

G.1. Bound on the empirical Hamming loss

We first derive an upper bound on the empirical normal-
ized Hamming loss of a hypothesis HESPBoost, with h̃ =∑T

t=1 αth̃t.
Lemma 5. The following upper bound holds for the empir-
ical loss of the hypothesis HESPBoost:

E
(x,y)∼S

[LHam(HESPBoost(x),y)]

≤ 1
ml

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃k
t ,xi,yi)

)
.

Ensemble Learning for Structured Prediction

Proof. Note that in view of (9), we can write, for any k and
x ∈ X ,

Hk
ESPBoost(x) = argmax

yk∈Yk

h̃k(x, yk). (15)

where h̃k =
∑T

t=1 αth̃
k
t and h̃k

t (x, yk) = 1hk
t (x)=yk . Ob-

serve that ρ(h̃k
t ,xi,yi) = 1 if the prediction made by ht for

the input xi is correct at position k, and −1 otherwise. For
any i ∈ [1,m], by the sub-additivity of the max function,

1Hk
ESPBoost(xi) 6=yk

i
= 1ρ(ehk,xi,yi)≤0 ≤ 1PT

t=1 αtρ(ehk
t ,xi,yi)≤0.

Thus, the empirical loss of the hypothesis HESPBoost,
E(x,y)∼S [LHam(HESPBoost(x),y)], can be upper bounded as
follows:

1
ml

m∑
i=1

l∑
k=1

1Hk
ESPBoost(xi) 6=yk

i

≤ 1
ml

m∑
i=1

l∑
k=1

1PT
t=1 αtρ(ehk

t ,xi,yi)≤0

≤ 1
ml

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃k
t ,xi,yi)

)
,

where we used for the last inequality the identity (1u≤0 ≤
e−u) valid for all u ∈ R.

G.2. Coordinate descent

Here we present the details of the derivation of our coordi-
nate descent algorithm.

Let αt−1 ∈ RN denote the vector obtained after t− 1 iter-
ations and et the tth unit vector in RN . We denote by Dt

the distribution over [1,m]× [1, l] defined by

Dt(i, k) =
1

ml exp
(
−

∑t−1
u=1 αuρ(h̃k

u,xi,yi)
)

At−1

where At−1 is a normalization factor, At−1 =
1

ml

∑m
i=1

∑l
k=1 exp

(
−

∑t−1
u=1 αuρ(h̃k

u,xi,yi)
)
. The di-

rection et selected at the tth round is the one minimizing
the directional derivative, that is

dF (αt−1 + ηet)
dη

∣∣∣∣
η=0

=−
m∑

i=1

l∑
k=1

ρ(h̃k
t ,xi,yi)Dt(i, k)At−1

=
[
2

∑
i,k:hk

t (xi) 6=yk
i

Dt(i, k)− 1
]
At−1

=(2εt − 1)At−1,

where εt is the average error of ht given by

εt =
m∑

i=1

l∑
k=1

Dt(i, k)1hk
t (xi) 6=yk

i
= E

(i,k)∼Dt

[1hk
t (xi) 6=yk

i
].

The remaining steps of our algorithm can be determined
as in the case of AdaBoost. In particular, given the direc-
tion et, the best step αt is obtained by solving the equa-
tion dF (αt−1+αtet)

dαt
= 0, which admits the closed-form

solution αt = 1
2 log 1−εt

εt
. The distribution Dt+1 can be

expressed in terms of Dt with the normalization factor
Zt = 2

√
εt(1− εt).

G.3. Learning guarantees

This section presents both a margin-based generalization
bound in support of the ESPBoost algorithm, and a bound
on the empirical margin loss.

For any ρ > 0, we define the empirical margin loss of
HESPBoost by the following:

R̂ρ

(
h̃

‖α‖1

)
=

1
ml

m∑
i=1

l∑
k=1

1ρ(ehk,xi,yi)≤ρ‖α‖1 . (16)

where h̃ is the corresponding scoring function.
Theorem 12. Let F denote the set of functions HESPBoost
with h̃ =

∑T
t=1 αth̃t for some α1, . . . , αt ≥ 0 and ht ∈

H for all t ∈ [1, T]. Fix ρ > 0. Then, for any δ > 0,
with probability at least 1 − δ, the following holds for all
HESPBoost ∈ F:

E
(x,y)∼D

[LHam(HESPBoost(x),y)] ≤ R̂ρ

(
h̃

‖α‖1

)

+ 2
ρl

l∑
k=1

|Yk|2Rm(Hk) +

√
log l

δ

2m
,

where Rm(Hk) denotes the Rademacher complexity of the
class of functions

Hk = {x 7→ 1hk
j (x)=y : j ∈ [1, p], y ∈ Yk}.

Proof. By definition of the Hamming loss, we can write

E
(x,y)∼D

[LHam(HESPBoost(x),y)]

=
1
l

l∑
k=1

E
(x,y)∼D

[1Hk
ESPBoost(x) 6=y]

=
1
l

l∑
k=1

E
(x,y)∼D

[1ρ(ehk,x,y)≤0].

We bound each of the summands above separately. Let
Π(Hk) denote the convex hull of Hk. Then, for any
k ∈ [1, l], we can apply a multi-class classification bound
based on the Rademacher complexity of Π(Hk) (Koltchin-
skii & Panchenko, 2002; Mohri et al., 2012). Thus, for any

Ensemble Learning for Structured Prediction

δ > 0, with probability at least 1−δ, the following inequal-
ity holds:

E
(x,y)∼D

[1ρ(ehk,x,y)≤0] ≤ E
(x,y)∼S

[1ρ(ehk,x,y)≤ρ‖α‖1]

+
2|Yk|2

ρ
Rm(Π(Hk)) +

√
log 1

δ

2m
,

Since the Rademacher complexity of the convex hull of a
set coincides with that of the set, for any k, Rm(Π(Hk)) =
Rm(Hk). Thus, by the union bound, summing up over
k these inequalities and dividing by l yields that for any
δ > 0, with probability at least 1 − δ, the following holds
for all HESPBoost ∈ F :

E
(x,y)∼D

[LHam(HESPBoost(x),y)] ≤ R̂ρ

(
h̃

‖α‖1

)

+
2
ρl

l∑
k=1

|Yk|2Rm(Hk) +

√
log l

δ

2m
,

which concludes the proof.

Thus, the theorem provides a margin-based guarantee for
convex ensembles such as those returned by ESPBoost.
The following theorem further provides an upper bound on
the empirical margin loss for ESPBoost.
Theorem 13. Let h̃ denote the scoring function returned
by ESPBoost after T ≥ 1 rounds. Then, for any ρ > 0, the
following inequality holds

R̂ρ

(
h̃

‖α‖1

)
≤ 2T

T∏
t=1

√
ε1−ρ
t (1− εt)1+ρ.

Proof. The proof steps are the same as those used for the
bound on the empirical margin loss for AdaBoost (Schapire
et al., 1997). We will use the following identity

Dt+1(i, k) =
exp

(
−

∑t
s=1 αsρ(h̃k

s ,xi,yi)
)

ml
∏t

s=1 Zs

,

which can be straightforwardly derived from the expression

of Dt+1 in terms of Dt. Then, we can write

R̂ρ

(
h̃

‖α‖1

)
=

1
ml

m∑
i=1

l∑
k=1

1ρ(ehk,xi,yi)≤ρ‖α‖1

≤ 1
ml

m∑
i=1

l∑
k=1

exp
(
−ρ(h̃k,xi,yi) + ‖α‖1ρ

)
≤ 1

ml
e‖α‖1ρ

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃k
t ,xi,yi)

)
= e‖α‖1ρ

m∑
i=1

l∑
k=1

DT+1(i, k)
T∏

t=1

Zt

= 2T
T∏

t=1

[√
1− εt

εt

]ρ √
εt(1− εt),

where the first inequality holds by 1u≤0 ≤ e−u for all u ∈
R and the second by Jensen’s inequality and the convexity
of the maximum function. This concludes the proof of the
theorem.

As in the case of AdaBoost (Schapire et al., 1997), it can be
shown that for ρ < γ, ε1−ρ

t (1− εt)1+ρ ≤ (1− 2γ)1−ρ(1+
2γ)1+ρ < 1 and the right-hand side of this bound decreases
exponentially with T .

H. Additional experiments

In this Section we present additional experimental results
that were not included in the main body of the paper due to
space limitations.

H.1. Artificial data sets

The objective of the first artificial data set (ADS1) was
to simulate the situation described in Section 1 where
h1, . . . , hp are local experts. To generate the data we chose
an arbitrary Markov chain over the English alphabet and
sampled 40,000 random sequences each consisting of 10
symbols. For each sequence, we generated five expert pre-
dictions. Each expert was designed to have a certain proba-
bility of making a mistake at each position in the sequence.
Expert hj correctly predicted positions 2j − 1 and 2j with
probability 0.97 and other positions with probability 0.5.
We forced experts to make similar mistakes by making
them select an adjacent alphabet symbol in case of an error.
For example, when a mistake was made on a symbol b, the
expert prediction was forced to be either a or c.

The second artificial data set (ADS2) modeled the case of
rather poor experts. ADS2 was generated in the same way
as ADS1, but expert predictions were different. This time
each expert made mistakes at four of the ten distinct ran-
dom positions in each sequence.

Ensemble Learning for Structured Prediction

Table 4. Average Normalized Hamming Loss for ADS3.
βADS1 = 0.95, βADS2 = 0.95, TSLE = 100, δ = 0.05.

HMVote 0.1788 ± 0.00004
HFPL 0.2189 ± 0.04097
HCV 0.1788 ± 0.00004
HFPL-CV 0.3148 ± 0.00387
HESPBoost 0.1831 ± 0.00240
HSLE 0.1954 ± 0.00185
HRand 0.3196 ± 0.00018
Best hj 0.2957 ± 0.00005

The results on ADS1 and ADS2 can be found in Section 5.
For all experiments with the algorithms HRand, HMVote, and
HCV we ran the WMWP algorithm for T = m rounds with
the βs listed in the caption of Table 1 , generating distribu-
tions P ⊆ {p1, . . . , pT }. ForP we used the collection of all
suffix sets {pt, . . . , pT } and δ = 0.05. For the algorithms
based on FPL, we used ε = 0.5/pl. The same parameter
choices were used for the subsequent experiments.

In addition to ADS1 and ADS2, we also synthesized a third
set. We simulated the case where each expert specialized in
predicting some subset of the labels. In particular, we gen-
erated 40,000 random sequences over the English alphabet
in the same way as for ADS1 and ADS2. To generate ex-
pert predictions, we partitioned the alphabet into 5 disjoint
subsets Aj . Expert j always correctly predicted the label in
Aj and the probability of correctly predicting the label not
in Aj was set to 0.7. To train the ensemble algorithms, we
used a training set of size m = 200.

The results are presented in Table 4. HMVote, HCV and
HESPBoost achieve the best performance on this data set with
a considerable improvement in accuracy over the best ex-
pert hj . We also observe as for the ADS2 experiment that
HRand and HFPL-CV fail to outperform the best model and
approach the accuracy of the best path expert only asymp-
totically.

H.2. Pronunciation data sets

As pointed out in Section 5, it can be argued that for this
task the edit-distance is a more suitable measure of per-
formance than the average Hamming loss. Table 5 shows
the results of our experiments. For these experiments,
our ensemble algorithms were trained using the Hamming
loss, but the performance is reported in terms of the edit-
distance. For the SLE algorithm of Nguyen & Guo (2007)
HSLE, the edit-distance was used for both training and test-
ing. Remarkably, the results for edit-distance are compa-
rable and HMVote again offers the best performance despite
not being optimized for this loss.

Finally, we also leveraged the fact that PDS2 is a larger
data set to experiment with other training sizes. For the
sake of completeness, the results are summarized in Ta-
ble 6.

Table 5. Average edit distance, PDS1 and PDS2. βPDS1 = 0.85,
βPDS2 = 0.97, TSLE = 100, δ = 0.05.

PDS1, m = 130 PDS2, m = 400
HMVote 0.8395 ± 0.01076 0.9626 ± 0.00341
HFPL 1.0158 ± 0.34379 0.9744 ± 0.01277
HCV 0.8668 ± 0.00553 0.9840 ± 0.00364
HFPL-CV 1.8044 ± 0.09315 1.8625 ± 0.06016
HESPBoost 1.3977 ± 0.06017 1.4092 ± 0.04352
HSLE 1.1762 ± 0.12530 1.2477 ± 0.12267
HRand 1.8962 ± 0.01064 2.0838 ± 0.00518
Best hj 1.2163 ± 0.00619 1.2883 ± 0.00219

Table 6. Average Hamming loss for PDS2. βPDS2 = 0.97,
TSLE = 100, δ = 0.05

m = 200 m = 600
HMVote 0.2343 ± 0.00083 0.2304 ± 0.00148
HFPL 0.2393 ± 0.00335 0.2332 ± 0.00313
HCV 0.2364 ± 0.00048 0.2362 ± 0.00109
HFPL-CV 0.4464 ± 0.01110 0.4063 ± 0.00976
HESPBoost 0.3524 ± 0.00662 0.3458 ± 0.00276
HSLE 0.3217 ± 0.03929 0.3307 ± 0.03165
HRand 0.4651 ± 0.00092 0.4544 ± 0.00308
Best hj 0.3413 ± 0.00050 0.3412 ± 0.00053

H.3. OCR data set

Table 7 summarizes our results with the OCR data set. As
can be seen from the table, the performance improvements
of ensemble methods over the single best hypothesis are
not statistically significant here.

H.4. Penn Treebank data set

To speed up the testing phase we only used sentences with
less than 20 words (a total of 87,704 sentences).

For the second experiment (TR2) we trained 5 SVMstruct

models. The five training sets (8,000 sentences each) were
carefully chosen so that each contained the 8 most fre-
quent POS tags but omitted a subset of some less frequent
ones.

For the SVM algorithms, we generated 267,214 bag-of-
word binary features. We first extracted all prefixes and
suffices of length 2, 3, 4, 5 of all words in the data set.
We then used binary features to indicate whether a given
word contains one of the prefixes or suffices found. In ad-
dition, we also used features indicating whether preceding
or following word contains one of those prefixes or suf-
fices.

I. Example of sub-optimality of the SLE
algorithm

In this section, we give an explicit construction showing
that the SLE algorithm of Nguyen & Guo (2007) may pro-
duce ensembles that perform no better than the best expert

Ensemble Learning for Structured Prediction

Table 7. Average Normalized Hamming Loss for OCR. β = 0.5,
TSLE = 100, δ = 0.05.

HMVote 0.1992 ± 0.00274
HFPL 0.1992 ± 0.00270
HCV 0.1993 ± 0.00266
HFPL-CV 0.2030 ± 0.00278
HESPBoost 0.1992 ± 0.00274
HSLE 0.1994 ± 0.00307
HRand 0.1994 ± 0.00276
Best hj 0.1994 ± 0.00306

hj , which can be significantly worse than the performance
of the optimal ensemble. We assume that l = p = 2, that
Y is a space of binary sequences, and that expert hj always
correctly predicts the jth substructure. The probability of
the event {h2

1(x) 6= y2, h1
2(x) 6= y1} is set to be equal to

q.

Suppose that the ensemble produced by SLE algorithm
consists of Tj copies of expert hj . If T1 < T2, then the
SLE prediction always agrees with expert h2. Conversely,
if T1 > T2 then SLE prediction always agrees with expert
h1. Finally, if T1 = T2 then with probability p, the predic-
tions of h1 and h2 disagree at both position 1 and 2 and, by
definition of the algorithm, exactly one of these predictions
must be chosen. In each of the cases above, the expected
loss of the algorithm is bounded below by q/2. Since in our
construction h1 and h2 can be chosen to have expected loss
precisely q/2, we conclude that for this example the SLE
algorithm produces ensembles that perform no better than
the best expert hj .

Note that in the above we can select q = 1, which, will re-
sult in an the expected loss of the SLE algorithm being 0.5,
while an optimal ensemble for this problem can achieve
100% accuracy.

J. Discussion of other related work

In this section, we briefly discuss several other publications
somewhat related to the topic of our work.

In the learning scenario we consider, the learner has access
to a set of p predictors h1, . . . , hp mappingX toY to devise
an accurate ensemble prediction. No other information is
available to the learner about these p experts, which are
effectively viewed as black boxes. This scenario covers
both the case where h1, . . . , hp are hand-crafted prediction
rules and the one where they are the hypotheses returned
by some learning algorithms trained on samples typically
no longer available.

In contrast, most ensemble methods for structured predic-
tion previously presented in the machine learning litera-
ture focus on scenarios where the learner can exploit some
specific structure of the given experts h1, . . . , hp or where
these experts are trained at the same time as the ensem-

ble learner itself (Grubb et al., 2013; Payet & Todorovic,
2010; Tu & Bai, 2010). For example, the weak predic-
tors used in the StructuredSpeedBoost algorithm of Grubb
et al. (2013) have a very specific structure based on special
selection and update rules. Similarly, the RF2 algorithm
of Payet & Todorovic (2010) uses tree experts to make its
predictions. Finally, the auto-context algorithm of Tu &
Bai (2010) is based on experts that are assumed to be prob-
abilistic models.

Appendix References
Grubb, A., Munoz, D., Bagnell, J.A., and Hebert, M. Speedma-

chines: Anytime structured prediction. In Budgeted Learning
Workshop, ICML 2013, 2013.

Payet, N. and Todorovic, S. (RF)2 - Random Forest Random
Field. In Advances in NIPS, pp. 1885–1893, 2010.

Tu, Z. and Bai, X. Auto-Context and Its Application to High-
Level Vision Tasks and 3D Brain Image Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32
(10):1744–1757, Oct 2010.

