Concentration in unbounded metric spaces

A. Comparing the metric and the subgaussian
diameters

Proof of Inequality 8). Let= = =(X) be the symmetrized
distance. By %), we haveE[Z] = 0 and certainly|Z| <
diam(X’). Hence,

Ee*® < exp((2diam(X)N)?/8) = exp(diam(X)2)\?/2),

where the inequality follows from Hoeffding’'s Lemma.

O

Proof of Inequality 9). Let X be anN-point space with
the uniform distribution an¢h(z, z’) = 1 for all distinct
x, 2’ € X. Then, for independently drawki, X’ € X, we
havep(X, X’) = 0 with probabilityl/N andp(X, X’) =
1 with probability 1 — 1/N. Hence,Z(X) = +1 with
probability 2 (1 — 1/N') and0 with probability1 /N, and

(; - 2?\[) (e*+e?),

which approachesosh()\) asN — oo. Sincecosh(\) <
eN’/2, taking N sufficiently large makeds(X) arbitrarily
close todiam(X) = 1. O
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Eexp(AE(X)) = N

A referee has suggested achievitigm(X) = Agg(X)

whereZ} ~ ;" andZ is generated fron¥ via the process

defined in L1). For fixedi € [n] andZ] ', 27, define
Wi(Ziv Zz/) = L(AZ{% Zz/) - L(Aziflzézg;lazz()

and note thatZ3) implies that|W;(Z;, Z!)| < 8p(Z;, Z}).

Now rewrite @9) as

E[R(A, S) — Ba(A,9)] = (30)
Z]P’ Z) ZIP’ (2i)P(2)Wi(zi, 20).

Invoking Jensen’s inequality and the argumentli)

eXp(Z}P’ z“ z)<ZPZ7 W(le)
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by considering the same metric as above on a continuous< exp(132AZ;(2)).

space with a continuous distribution. This indeed works,

but the induced triplé X', p, 1) is not a metric probability
space since the Boretalgebra is not compatible with the
metric. We do not know whetheliam(X') = Agg(X) is
possible in a metric probability space.

B. The equivalence of (1) and (16)

Suppose thaf : X" — R satisfies the Lipschitz condition
(2). This is equivalent to saying thgtis 1-Lipschitz with
respect to the weighted Hamming metric

n
) =D o)
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But p,, is nothing but ar{; product metric (in the sense of
(3)), with p; (z;, %) = w; (ital)} Sincediam(X;, p;) =
w;, we have that indeed the formulatior§ &nd (L6) are
equivalent.

r, 2’ € X"

C. Stability proofs

Proof of Lemmal. It follows from (Bousquet & Elisseeff
2002 Lemma 7), that for all € [n],

Egp 2o [L(Azp. Z:) —

(29)

Taking logarithms yields the estimate

ZM Wiz, 7)) < 30°0%(2),  (31)

which, after substituting31) into (30), proves the claim.
O

Proof of Lemm&. We examine the two summands sepa-
rately. The definition22) of R(A,-) implies that the lat-
ter is g-Lipchitz since it is a convex combination of-
Lipschitz functions. Now?,, (A,-) defined in 21) is also a
convex combination ofi-Lipschitz functions, but because
z; appears twice il (A, z;), changingg; to z; could in-
cur a difference of up t@3p(z;, 2}). Hence,R,(A,") is
23-Lipschitz. Since the Lipschitz seminorm is subadditive,
the claim is proved. O

D. Non-iid proof

Proof of Theoren8. We begin by examining the martin-
gale difference

Vi =Elp|X] =ai] - E[p| X{™" =a77]
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as in the proof of Theorerh. More explicitly,

‘/;;:
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Write V; to denoteV; as a function ofX:~! with X; inte-
grated out:

Vi= Z (s | X7~ HP(a} | Xi7H)- (32)
Z[P(%H | X1 ) o(X ey )

I?+1

— P}y | X7 ) o( X )]

Let 7 be an optimal coupling realizing the infimum in the
transportation cost distan@,  used to define; (28, 2h).
Recalling £5), we have
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= F(x;) — F(
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where the first inequality holds by the Lipschitz property
and the second by definition &f, andF' : X; — R is
defined by

Z P(ayy | X1 ) (X7 tyay).

Let us substitute33d) into (32):

Vi <7+ ) Pla | X7HP() | X7 (F(2:) — F(a).

’
mi,xi

Observe thaf' is 1-Lipschitz underp; and apply Jensen’s
inequality:

Bl | x{]
< eMi Z P(x; | Xi~

. ’
Ti, T

< eMi Z P(x; | X1~

’
mi,xl

< exp ()\Ti + ;Age(é\fi)V) ,

1)]}1)(:5; | X{*l)e/\(F(Ii)—F(wé))
DP ()| X{7Y) cosh(Ap(ws, 7))

where the second inequality follows from the argument in
(17) and the third from the definition ahs(X;). Repeat-
ing the standard martingale argument18)(yields

Pl —Ep >t) = <ZV >t>
gexp< AQZA /\t+/\zn>.

Optimizing over\ yields the claim.



