
Concentration in unbounded metric spaces

A. Comparing the metric and the subgaussian
diameters

Proof of Inequality (8). LetΞ = Ξ(X ) be the symmetrized
distance. By (5), we haveE[Ξ] = 0 and certainly|Ξ| ≤
diam(X ). Hence,

EeλΞ ≤ exp((2 diam(X )λ)2/8) = exp(diam(X )2λ2/2),

where the inequality follows from Hoeffding’s Lemma.

Proof of Inequality (9). Let X be anN -point space with
the uniform distribution andρ(x, x′) = 1 for all distinct
x, x′ ∈ X . Then, for independently drawnX,X ′ ∈ X , we
haveρ(X,X ′) = 0 with probability1/N andρ(X,X ′) =
1 with probability 1 − 1/N . Hence,Ξ(X ) = ±1 with
probability 1

2 (1 − 1/N) and0 with probability1/N , and

E exp(λΞ(X )) =
1

N
e1 +

(

1

2
− 1

2N

)

(

eλ + e−λ
)

,

which approachescosh(λ) asN → ∞. Sincecosh(λ) ≤
eλ

2/2, takingN sufficiently large makes∆SG(X ) arbitrarily
close todiam(X ) = 1.

A referee has suggested achievingdiam(X ) = ∆SG(X )
by considering the same metric as above on a continuous
space with a continuous distribution. This indeed works,
but the induced triple(X , ρ, µ) is not a metric probability
space since the Borelσ-algebra is not compatible with the
metric. We do not know whetherdiam(X ) = ∆SG(X ) is
possible in a metric probability space.

B. The equivalence of (1) and (16)

Suppose thatf : Xn → R satisfies the Lipschitz condition
(2). This is equivalent to saying thatf is 1-Lipschitz with
respect to the weighted Hamming metric

ρw(x, x′) =

n
∑

i=1

wi {xi 6=x′

i}, x, x′ ∈ Xn.

But ρw is nothing but anℓ1 product metric (in the sense of
(3)), with ρi(xi, x′i) = wi {xi 6=x′

i}. Sincediam(Xi, ρi) =

wi, we have that indeed the formulations (1) and (16) are
equivalent.

C. Stability proofs

Proof of Lemma1. It follows from (Bousquet & Elisseeff,
2002, Lemma 7), that for alli ∈ [n],

E[R(A, S) − R̂n(A, S)] = (29)

EZn
1
,Z̃n

1
[L(AZn

1
, Z̃i) − L(AZ̃n

1
, Z̃i)],

whereZn1 ∼ µn andZ̃ is generated fromZ via the process
defined in (11). For fixedi ∈ [n] andZi−1

1 ,Zni+1, define

Wi(Zi, Z
′
i) = L(AZn

1
, Z ′

i) − L(AZi−1

1
Z′

i
Zn

i+1

, Z ′
i)

and note that (23) implies that|Wi(Zi, Z
′
i)| ≤ βρ(Zi, Z

′
i).

Now rewrite (29) as

E[R(A, S) − R̂n(A, S)] = (30)
∑

zi−1

1
,zn

i+1

P(zi−1
1 )P(zni+1)

∑

zi,z
′

i

P(zi)P(z′i)Wi(zi, z
′
i).

Invoking Jensen’s inequality and the argument in (17),
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Taking logarithms yields the estimate

∑

zi,z
′

i

P(zi)P(z′i)Wi(zi, z
′
i) ≤ 1

2β
2∆2

SG(Z), (31)

which, after substituting (31) into (30), proves the claim.

Proof of Lemma2. We examine the two summands sepa-
rately. The definition (22) of R(A, ·) implies that the lat-
ter is β-Lipchitz since it is a convex combination ofβ-
Lipschitz functions. NowR̂n(A, ·) defined in (21) is also a
convex combination ofβ-Lipschitz functions, but because
zi appears twice inL(Azn

1
, zi), changingzi to z′i could in-

cur a difference of up to2βρ(zi, z′i). Hence,R̂n(A, ·) is
2β-Lipschitz. Since the Lipschitz seminorm is subadditive,
the claim is proved.

D. Non-iid proof

Proof of Theorem3. We begin by examining the martin-
gale difference

Vi = E[ϕ |Xi
1 = xi1] − E[ϕ |Xi−1

1 = xi−1
1 ]
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as in the proof of Theorem1. More explicitly,

Vi =
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xn
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P(xni+1|xi1)ϕ(xi1x
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.

Write Ṽi to denoteVi as a function ofXi−1
1 with Xi inte-

grated out:

Ṽi =
∑

xi,x′

i

P(xi |Xi−1
1 )P(x′i |Xi−1

1 )· (32)
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Let π be an optimal coupling realizing the infimum in the
transportation cost distanceTρn

i+1
used to defineτi(xi1, x

′
i).

Recalling (25), we have
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+τ̄i

= F (xi) − F (x′i) + τ̄i, (33)

where the first inequality holds by the Lipschitz property
and the second by definition of̄τi, andF : Xi → R is
defined by

F (y) =
∑

xn
i+1

P(xni+1 |Xi−1
1 xi)ϕ(Xi−1

1 yxni+1).

Let us substitute (33) into (32):

Ṽi ≤ τ̄i +
∑

xi,x′
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P(xi |Xi−1
1 )P(x′i |Xi−1

1 )(F (xi) − F (x′i)).

Observe thatF is 1-Lipschitz underρi and apply Jensen’s
inequality:
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,

where the second inequality follows from the argument in
(17) and the third from the definition of̄∆SG(Xi). Repeat-
ing the standard martingale argument in (19) yields

P(ϕ− Eϕ > t) = P

(
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)

≤ exp
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.

Optimizing overλ yields the claim.


