Maximum Margin Multiclass Nearest Neighbors

A. Bayes near-optimality proof

Proof of Theorem 1. Since m is L-Lipschitz, given x, 2’ €
X we have
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By the definition of the nearest neighbor classifier gyy in
(6) we have Es[P(gn(X) # )] = Es[P(Yr, x) # Y).
where the expectation is over the sample S determining
gnn- By (18) this error is bounded above by
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where now the expectation is over S and X. Denoting
k" = argmax; n;(X) and splitting the sum , the first term
(which does not depend on S) satisfies
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It remains to bound Eg x[d(X, X, (x))] and we proceed
exactly as in Ben-David & Shalev-Shwartz (2014). Let
{C4,...,Cn} be an e-cover of X of cardinality N =
N(e,X,d). Given a sample S, for z € C; such that
SNC; # 0 we have d(z, X, (z)) < &, while for z € C;
such that SN C; = 0 we have d(x, Xy, () < diam(X) =
1, thus Eg x [d(X, X, (x))] is bounded above by
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Since P(Ci)ES[]ISﬁCi:Q)] = P(CZ)(l — P(CZ))n < 1/67’L
and N = N (e, X, d) we get
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Setting € = 2n~ D71 concludes the proof. O
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B. Rademacher analysis proofs

Proof of inequality (10). Dudley’s chaining integral (Dud-
ley, 1967) bounds from above the Rademacher complexity
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By Lemma 2 the integral can be bounded as follows:
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where in the second inequality we used the fact that for
x € (0,1] and ¢ > e we have log(£) < logc . Choosing
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Proof of Theorem 4. An adaptation* of Mohri et al. (2012,
Theorem 4.5) to H, states that with probability 1 — ¢, for
allL >0,h € Hy,

~
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Since 1{y,<0} < Luagin(u) we have P(gn(X) # V) <
E[Lmagin(R)]. Since Lopygin(t) < Leworr(u) wWe can replace
L yaein in the empirical loss by the loss function L.

Bounding R,,(H ) using (10) concludes the proof. O

4essentially setting o = 1 in Mohri et al. (2012) and doing the
stratification on L instead
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C. Scale sensitive analysis proof

Proof of Theorem 5. An application® of Guermeur (2010,
Theorem 1) states that with probability 1 — ¢, for all L > 0,
heH Ls
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Applying the metric entropy bound in Lemma 2 proves the
Theorem. O

D. Approximate NN proofs

First, we will show that & is indeed a 2n additive perturba-
tion of h, i.e.

Ih = Rlloo < 2. (19)

Instead of working directly with (16) we consider the fol-
lowing L-Lipschitz extension
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easily seen to induce the same classifier g5, as (16). Con-

sider the first term (the second term is treated similarly) and
its approximate version:

?l(l‘,y) = T[-l,l] (mln {g(nvy) —|—LC§(X,“.13)}) y
S
where d < d < (1 + n)d, given in (15), is the approximate

“distance” as provided by the approximate nearest neigh-
bor. For notational convenience, denote

h(.l?, y) = T[-l,l] (miin qi (.13, y))
iL(LL‘, y) - T[—l,l] (I’l’llln Gi (.’t, y))
ai(z,y) = }}z(y) +ri(x)
Gi(z,y) = hi(y) +7i(w),

where hi(y) = &(Yi,y), ri(z) = Ld(X;,z), and h;, 7;
defined analogously.

Observe that if 7;(z) > 2 then 7;(x) > 2/(1 +1n) >
2(1 — n). In this case, since h has range in [—1, 1], the
eventual application of truncation operator Ty ;) will force

h(z,y) — h(z,y) < 2. Hence, we may assume that

Ssetting v = 1 in Guermeur (2010, Theorem 1) and doing the
stratification on L instead

7;(x) < 2 and so r;(x) < 2. It is straightforward to verify
that for a,b € R"™ with max;¢[,) [a; — b;| <7, we have

Ty (rnl_inai) — Ty (miin bi)| <n.

Thus, establishing |¢;(z,y) — ¢;(x,y)] < 27 for all i €
[|Si]]andy € Y with 7;(x), r;(x) < 2 suffices to prove the
claim. Indeed, by (15) we have

ri(z) = 7i(2)] < |ri(x) = (L+n)ri(z)] < 2.

Proof of Lemma 6. Suppose heHt L,n- By the definition
of Hy, ,,, there exists an h € H, such that ||h — Ao < 7.
Let i’ be some element in a minimal e-cover of #, so that
[k — W||oo < €. Then

1B =1 llso < Ih = hllos + 2= B llos <€+
Hence,
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whence the claim follows. O

E. Dimensionality reduction proof

Proof of Theorem 7. Put S = (X,Y). For X; € X and
X, € X, define 6;(h) = h(X;,Y;) — h(X;,Y;). Then
ﬁnH ;S)=E | sup — oih(X;,Y;) | S
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By (10), we have
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Since by construction h is L-Lipschitz in its first argument,
we have
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Our claimed bound follows from (20) and (21). O]
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