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A. Inference details
A.1. Derivation of conjugate prior updates

By combining the Poisson process and the Hawkes process
likelihoods given in the main text, we can write the joint
likelihood, with the auxiliary parent variables, as,

p({sn, cn, zn}Nn=1, | {λ0,k(t)}Kk=1, {hk,k′(∆t)}k,k′) =

K∏
k=1

[
exp

{
−
∫ T

0

λ0,k(τ)dτ

}
N∏
n=1

λ0,k(sn)δcn,kδzn,0

]

×
N∏
n=1

K∏
k′=1

[
exp

{
−
∫ T

sn

hcn,k′(τ − sn)dτ

}
N∏

n′=1

hcn,cn′ (sn′ − sn)
δc

n′ ,k′δz
n′ ,n

]
.

The first line corresponds to the likelihood of the back-
ground processes; the second and third correspond to the
likelihood of the induced processes triggered by each spike.

To derive the updates for weights, recall from Equation 2
of the main text that Wk,k′ only appears in the impulse re-
sponses for which cn = k and cn′ = k′. so we have,

p(Wk,k′ | {sn, cn, zn}Nn=1, . . .)

∝
N∏
n=1

[
exp

{
−
∫ T

sn

hk,k′(τ − sn)dτ

}
N∏

n′=1

hk,k′(sn′ − sn)
δc

n′ ,k′δz
n′ ,n

]δcn,k

× p(Wk,k′)

=

N∏
n=1

[
exp

{
−
∫ T

sn

Ak,k′Wk,k′gk,k′(τ − sn)dτ

}
N∏

n′=1

(Ak,k′Wk,k′gk,k′(sn′ − sn))
δc

n′ ,k′δz
n′ ,n

]δcn,k

× p(Wk,k′).

If Ak,k′ = 1 and we ignore spikes after T −∆tmax, this is
proportional to

exp {−Wk,k′Nk}W
Nk,k′

k,k′ p(Wk,k′),

where

Nk =

N∑
n=1

δcn,k, and Nk,k′ =

N∑
n=1

N∑
n′=1

δcn,kδcn′ ,k′δzn′ ,n.

When p(Wk,k′) is a gamma distribution, the conditional
distribution is also gamma. If Ak,k′ = 0, the conditional
distribution reduces to the prior, as expected.

The derivations of conjugate updates for constant back-
ground rates follows the same pattern.

We use a logistic normal distribution for the impulse re-
sponses.

gk,k′(∆t |µ, τ) =
1

Z
exp

{
−τ
2

(
σ−1

(
∆t

∆tmax

)
− µ

)2
}

σ−1(x) = ln(x/(1− x))

Z =
∆t(∆tmax −∆t)

∆tmax

( τ
2π

)− 1
2

.

The normal-gamma prior µ, τ ∼ NG(µ, τ |µ0
µ, κ

0
µ, α

0
τ , β

0
τ )

on the parameters of the logistic normal distribution is con-
jugate with the likelihood. To see this, note that the only
place gk,k′(∆t) appears in the likelihood is in

N∏
n=1

[
exp

{
−
∫ T

sn

Ak,k′Wk,k′gk,k′(τ − sn)dτ

}
N∏

n′=1

(Ak,k′Wk,k′gk,k′(sn′ − sn))
δc

n′ ,k′δz
n′ ,n

]δcn,k

.

Since the impulse responses are probability density func-
tions, gk,k′ integrates to one when sn < T −∆tmax.
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When ∆tmax � T , we can safely ignore spikes that oc-
cur at the very end of the dataset. Thus we are left with a
likelihood that is proportional to a product of logistic nor-
mal densities. Since the logistic function is invertible, we
may work with logit-transformed intervals instead. Then
the likelihood is a product of normal densities, which is
conjugate with our normal gamma prior. We can then de-
rive the following conditional distribution:

µk,k′ , τk,k′ | {sn, cn, zn}Nn=1, µ
0
µ, κ

0
µ, α

0
τ , β

0
τ ∼

N (µk,k′ |µµ, (κµτk,k′)−1)×Gamma(τk,k′ |ατ , βτ )

where

µµ =
κ0
µµ

0
µ +mx̄

κ0
µ +m

,

κµ = κ0
µ +m,

ατ = α0
τ +

m

2
,

xn,n′ = ln(sn′ − sn)− ln(tmax − (sn′ − sn)),

m =

N∑
n=1

N∑
n′=1

δcn,kδcn′ ,k′δzn′ ,n,

x̄ = x̄ =
1

m

N∑
n=1

N∑
n′=1

δcn,kδcn′ ,k′δzn′ ,nxn,n′

βτ = β0
τ +

1

2

N∑
n=1

N∑
n′=1

δcn,kδcn′ ,k′δzn′ ,n(xn,n′ − x̄)2

+
κ0
µm(x̄− µ0

µ)2

2(κ0
µ +m)

.

A.2. Log Gaussian Cox Process background rates

In the Trades on the S&P100 and the Gangs of Chicago
datasets, it was crucial to model the background fluctua-
tions that were shared among all processes. However, if
the background rate is allowed to vary at time scales shorter
than ∆tmax then it may obscure interactions between pro-
cesses. To prevent this, we sample the Log Gaussian Cox
Process (LGCP) at a sparse grid of M + 1 equally spaced
points and linearly interpolate to evaluate the background
rate at the exact time of each event. We have,

y =

{
ŷ

(
mT

M

)}M
m=0

∼ GP(0,K(t, t′)).

Then,

{
λ̂0,k

(
mT

M

)}M
m=0

= µk + αk exp

{
ŷ

(
mT

M

)}
,

and λ0,k(sn) is linearly interpolated between the rate at sur-
rounding grid points.

The equally spaced grid allows us to calculate the integral
using the trapezoid quadrature rule. We use Elliptical Slice
Sampling (Murray et al., 2010) to sample the conditional
distribution of the vector y.

Kernel parameters are set empirically or with prior knowl-
edge. For example, the period of the kernel is set to one
day for the S&P100 dataset and one year for the Gangs of
Chicago dataset since these are well-known trends. The
scale and offset parameters have log Normal priors set
such that the maximum and minimum homogeneous event
counts in the training data are within two standard devia-
tions of the expected value under the LGCP background
rate. That is, the background rate should be able to explain
all of the data without any observations if there is no evi-
dence for interactions.

A.3. Priors on hyperparameters

When possible, we sample the parameters of the prior dis-
tributions. For example, in the Erdős-Renyi graph model
we place a Beta(1, 1) prior on the sparsity ρ. For the latent
distance model, we place a log normal prior on the char-
acteristic length scale τ and sample it using Hamiltonian
Monte Carlo.

For all of the results in this paper, we fixed the prior on the
interaction kernel, g(∆t) to a weak Normal-Gamma dis-
tribution with parameters µ0

µ = −1.0, κ0
µ = 10, α0

τ = 10,
and β0

τ = 1.

Scale of gamma prior on weights. For real data, we
place an uninformative prior on the weight distribution.
The gamma distribution is parameterized by a shape α0

W

and an inverse scale or rate β0
W . The shape parameter α0

W

is chosen by hand (typically we use α0
W = 2), but the in-

verse scale parameter β0
W is sampled. We may not know a

proper scale a priori, however we can use a scale-invariant
Jeffrey’s prior to infer this parameter as well. Jeffrey’s prior
is proportional to the square root of the Fisher information,
which for the gamma distribution is

p(β0
W ) ∝

√
I(β0

W ) =

√
α0
W

β0
W

.

Hence the posterior is

p(β0
W | {{Wk,k′}}) ∝√
α0
W

β0
W

K∏
k=1

K∏
k′=1

(β0
W )α

0
W

Γ(α0
W )

W
α0

W−1
k,k′ e−β

0
WWk,k′

∝ (β0
W )K

2α0
W−1 exp

{
−β0

W

K∑
k=1

K∑
k′=1

Wk,k′

}
.
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This is a gamma distribution with parameters,

β0
W ∼ Gamma(K2α0

W ,

K∑
k=1

K∑
k′=1

Wk,k′).

B. Synthetic test details
We generated T = 1000s of events for each synthetic net-
work. The average number of spikes was 25,732 ± 9,425.
Network 6, the only network for which the GLM outper-
formed the network Hawkes model in the event-prediction
test, was an outlier with 44,973 events. For event predic-
tion, we trained on the first 900 seconds and tested on the
last 100 seconds of the data. We ran our Markov chain
for 2500 iterations and computed the posterior probabili-
ties ofA andW using the last 500 samples.

A simple alternative to the Hawkes model is to
look at cross-correlation between the event times.
First, the event times are binned into an array ŝk
of length M . Let (ŝk ? ŝk′)[m] be the cross-
correlation between ŝk and ŝk′ at discrete time lag m.
Then, Wk,k′ =

∑∆tmaxM/T
m=0 (ŝk ? ŝk′)[m] provides a sim-

ple measure of directed, excitatory interaction that can be
thresholded to perform link prediction.

Additionally, we compare the network Hawkes process
to the generalized linear model for point processes, a
popular model in computational neuroscience (Panin-
ski, 2004). Here, the event counts are modeled as
ŝk,m ∼ Poisson(λk,m). The mean depends on external co-
variates and other events according to

λk,m = exp

{
αTk ym +

K∑
k′=1

B∑
b=1

βk,k′,b(gb ∗ ŝk′)[m]

}
,

where ym is an external covariate at timem, {gb(∆m)}Bb=1

are a set of basis functions that model impulse responses,
and α and β are parameters to be inferred. Under this for-
mulation the log-likelihood of the events is concave func-
tion of the parameters and is easily maximized. Unlike the
Hawkes process, however, this model allows for inhibitory
interactions.

For link prediction,
∑
b βk,k′,b provides a measure of di-

rected excitatory interaction that can be used to compute
an ROC curve. In our comparisons, we used ym ≡ 1
to allow for time-homogeneous background activity and
set {gb(∆m)} to the top B = 6 principal components of
a set of logistic normal impulse responses randomly sam-
pled from the Hawkes prior.

We used an L1 penalty to promote sparsity in the parame-
ters of the GLM, and chosen the penalty using cross vali-
dation on the last 100 seconds of the training data.

Model Relative prediction improvement
Network Hawkes 100%
Standard Hawkes 59.2±14.2%
GLM 71.6±9.2%

Figure 1: Relative improvement in predictive log likelihood over
a homogeneous Poisson process baseline. Relative to the network
Hawkes, the standard Hawkes and the GLM yield significantly
less predictive power.

Figure 4 of the main text shows the predictive log likeli-
hoods for the Hawkes model with the correct Erdös-Renyi
prior, the standard Hawkes model with a complete graph
of interactions, and a GLM. On all but network 6, the net-
work Hawkes model outperforms the competing models in
terms of predictive log likelihood. Table 1 shows the aver-
age predictive performance across sample nextworks. The
standard Hawkes and the GLM provide only 59.2% and
71.6%, respectively, of this predictive power.

C. Trades on the S&P100 model details
We study the trades on the S&P 100 index collected at 1s
intervals during the week of Sep. 28 through Oct. 2, 2009.
We group both positive and negative changes in price into
the same process in order to measure overall activity. An-
other alternative would be to generate an “uptick” and a
“downtick” process for each stock. We ignored trades out-
side regular trading hours because they tend to be outliers
with widely varying prices. Since we are interested in short
term interactions, we chose ∆tmax = 60s. This also limits
the number of potential event parents. If we were inter-
ested in interactions over longer durations, we would have
to threshold the price changes at a higher level. We pre-
cluded self-excitation for this dataset since upticks are of-
ten followed by downticks and vice-versa. We are seeking
to explain these brief price jumps using the activity of other
stocks.

We run our Markov chain for 2000 iterations and compute
predictive log likelihoods and the eigenvalues of the ex-
pected interaction matrix, E[A�W ], using the last 400
iterations of the chain. The posterior sample illustrated in
the main text is the last sample of the chain.

Trading volume varies substantially over the course of the
day, with peaks at the opening and closing of the market.
This daily variation is incorporated into the background
rate via a Log Gaussian Cox Process with a periodic kernel.
We set the period to one day. Figure 2 shows the posterior
distribution over the background rate.

Though it is not discussed in the main text, we also con-
sidered stochastic block model (SBM) priors as well (Hoff,
2008), in hopes of recovering latent sector affiliations based
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Figure 2: Posterior distribution over shared background rates for
the S&P100. Shading indicates two standard deviations from the
mean.

on patterns of interaction between sectors. For exam-
ple, stocks in the financial sector may have 90% proba-
bility of interacting with one another, and 30% probabil-
ity of interacting with stocks in the energy sector. Rather
than trying to interpret this from the embedding of a la-
tent distance model, we can capture this belief explicitly
with a stochastic block model prior on connectivity. We
suppose there are J sectors, and the probability of be-
longing to a given sector is α ∈ [0, 1]J ∼ Dirichlet(α0).
The latent sector assignments are represented by the vec-
tor b ∈ [1, J ]K , where bk ∼ Cat(α). The probability of a
directed interaction is Pr(Ak,k′ = 1) = Bbk,bk′ , where B
is a J × J matrix of Bernoulli probabilities. We place a
beta prior on the entries ofB.

Our experiments with the SBM prior yield comparable pre-
dictive performance to the latent distance prior, as shown in
Figure 3. The inferred clusters (not shown) are correlated
with the clusters identified by Bloomberg.com, but more
analysis is needed. It would also be interesting to study the
difference in inferred interactions under the various graph
models; this is left for future work.

Financial Model Pred. log lkhd. (bits/spike)
Indep. LGCP 0.594
Std. Hawkes 0.912
Net. Hawkes (Erdős-Renyi) 0.903
Net. Hawkes (Latent Distance) 0.888
Net. Hawkes (SBM) 0.894

Figure 3: Comparison of financial models on a event prediction
task, relative to a homogeneous Poisson process baseline.

D. Gangs of Chicago model details
The first 12 years are used for training, 1993 is reserved for
cross-validation, and the remaining two years are used to
test the predictive power of the models. We also considered
the crime dataset from www.data.cityofchicago.
org, but this does not identify gang-related incidents.

We run our Markov chain for 700 iterations and use the last
200 iterations to compute predictive likelihoods and expec-
tations. The posterior sample illustrated in the figure in
main text is the last sample of the chain.

Since this is a spatiotemporal dataset, our intensities
are functions of both spatial location and time. For
simplicity we factorize the intensity into λk,x(x)λk,t(t),
where λk,t(t) is a Gaussian process as described above,
and λk,x(x) is uniformly distributed over the spatial region
associated with process k and is normalized such that it in-
tegrates to 1.

In the case of the latent distance model with the commu-
nity process model, each community’s location is fixed to
its center of mass. With the cluster process model, we in-
troduce a latent location for each cluster and use a Gaus-
sian distribution for the prior probability that a community
belongs to a cluster. This encourages spatially localized
clusters.

Figure 4 shows the cross validation results used to select
the number of clusters, K, in the clustered process iden-
tity model and each of the four graph models. For the
empty, complete, and Erdös-Renyi graph priors, we dis-
cover K = 15, 4, and 4 clusters respectively. The latent
distance model, with its prior for spatially localized clus-
ters, has its best performance for K = 5 clusters.

The spatial GMM process ID model from Cho et al. (2013)
fails on this dataset because it assigns its spatial intensity
over all of R2, whereas the clustering model concentrates
the rate on only the communities in which the data resides.
Figure 5 shows the results of this spatial process ID model
on the prediction task. We did not test a latent distance
model with the spatial GMM, but it would likely suffer
in the same way as the empty, complete, and Erdős-Renyi
graph priors.
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Figure 5: Comparison of predictive log likelihoods for Chicago
homicides. This is the same as Figure 7a of the main text, but also
includes the spatial GMM process identity model.
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