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A. Proofs
A.1. Proof of Theorem 2

The derivative of g(ρ) is

g′(ρ) =

nc∑
k=k0

2z2k
(γλPQ,k − ρ)3

.

Hence, g′(ρ) > 0 whenever ρ < γλPQ,k0 , and g(ρ) is strictly increasing in the interval (−∞, γλPQ,k0). Moreover,

lim
ρ→−∞

g(ρ) = −τ2 and lim
ρ→γλPQ,k0

g(ρ) = +∞,

and thus g(ρ) has exactly one root in (−∞, γλPQ,k0). Notice that ‖z‖2 = ‖ vec(V>QY VP )‖2 = ‖V>PQy‖2 = ‖y‖2 since
VPQ is an orthonormal matrix, and then ρ0 = γλPQ,k0 − ‖y‖2/τ = γλPQ,k0 − ‖z‖2/τ . As a result,

g(ρ0) =

nc∑
k=k0

z2k
(γλPQ,k − ρ0)2

− τ2

=

nc∑
k=k0

z2k
(γλPQ,k − γλPQ,k0 + ‖z‖2/τ)2

− τ2

≤
nc∑
k=k0

z2k
(‖z‖2/τ)2

− τ2

=

(∑nc
k=k0

z2k
‖z‖22

− 1

)
τ2

≤ 0,

where the first inequality is because λPQ,k ≥ λPQ,k0 for k ≥ k0. The fact that g(ρ0) ≤ 0 concludes that the only root in
(−∞, γλPQ,k0) is in [ρ0, γλPQ,k0) but not (−∞, ρ0).

A.2. Proof of Theorem 3

Denote by h = vec(H), y = vec(Y ) and M = (γP ⊗Q− ρInc), and denote by h′, y′ and M ′ similarly. Let λmin(·) and
λmax(·) be two functions extracting the smallest and largest eigenvalues of a matrix. Under our assumption,

λmin(M) = γλPQ,1 − ρ ≥ Cγ,τ > 0

which means that M is positive definite, and so is M ′. By Eq. (14),

h− h′ = M−1y −M ′−1y′

= M−1(y − y′) + (M−1 −M ′−1)y′

= M−1(y − y′) +M−1(M ′ −M)M ′−1y′

= M−1(y − y′) + (ρ′ − ρ)M−1M ′−1y′.

Note that ‖Av‖2 ≤ λmax(A)‖v‖2 for any symmetric positive-definite matrix A and any vector v, as well as λmax(AB) ≤
λmax(A)λmax(B) for any symmetric positive-definite matrices A and B. Hence,

‖h− h′‖2 = ‖M−1(y − y′) + (ρ′ − ρ)M−1M ′−1y′‖2
≤ ‖M−1(y − y′)‖2 + |ρ− ρ′|‖M−1M ′−1y′‖2
≤ λmax(M−1)‖y − y′‖2 + λmax(M−1)λmax(M ′−1)|ρ− ρ′|‖y′‖2

≤ ‖y − y′‖2
Cγ,τ

+
|ρ− ρ′|‖y′‖2

C2
γ,τ

,
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where the first inequality is the triangle inequality, the second inequality is becauseM−1 andM ′−1 are symmetric positive
definite, and the third inequality follows from λmax(M−1) = 1/λmin(M) and λmax(M ′−1) = 1/λmin(M ′). Due to the
symmetry of h and h′,

‖h− h′‖2 ≤
‖y − y′‖2
Cγ,τ

+
|ρ− ρ′|min{‖y‖2, ‖y′‖2}

C2
γ,τ

.

This inequality is the vectorization of (18).

For MAVR in optimization (9), Theorem 2 together with our assumption indicates that

γλPQ,1 − ‖y‖2/τ ≤ ρ < γλPQ,1,

γλPQ,1 − ‖y′‖2/τ ≤ ρ′ < γλPQ,1,

so |ρ′ − ρ| ≤ max{‖y‖2/τ, ‖y′‖2/τ} and

‖h− h′‖2 ≤
‖y − y′‖2
Cγ,τ

+
max{‖y‖2, ‖y′‖2}min{‖y‖2, ‖y′‖2}

τC2
γ,τ

=
‖y − y′‖2
Cγ,τ

+
‖y‖2‖y′‖2
τC2

γ,τ

.

For unconstrained MAVR in optimization (10), we have

‖h− h′‖2 ≤
‖y − y′‖2
Cγ,τ

,

since ρ = ρ′ = −1.

A.3. Proof of Theorem 4

Denote by h = vec(H), y = vec(Y ), h∗ = vec(H∗), e = vec(E), and M = γP ⊗ Q. The Kronecker product P ⊗ Q
is symmetric and positive definite, and then M1/2 is a well-defined symmetric and positive-definite matrix. We can know
based on V (H∗) ≤ Ch that

‖M1/2h∗‖2 =

√
γh∗

>
(P ⊗Q)h∗ ≤

√
γCh‖h∗‖22 =

√
γCh‖h∗‖2.

Let λmin(·) and λmax(·) be two functions extracting the smallest and largest eigenvalues of a matrix. In the following, we
will frequently use that ‖Av‖2 ≤ λmax(A)‖v‖2 for any symmetric positive-definite matrix A and any vector v.

Consider unconstrained MAVR in optimization (10) first. Since ρ = −1,

h− h∗ = (M + Inc)
−1y − h∗

= (M + Inc)
−1(h∗ + e)− (M + Inc)

−1(M + Inc)h
∗

= −(M + Inc)
−1Mh∗ + (M + Inc)

−1e.

As a consequence,
E‖h− h∗‖22 = ‖(M + Inc)

−1Mh∗‖22 + E‖(M + Inc)
−1e‖22,

since E[(M + Inc)
−1e] = (M + Inc)

−1Ee = 0nc. Subsequently,

‖(M + Inc)
−1Mh∗‖2 ≤ λmax((M + Inc)

−1M1/2) · ‖M1/2h∗‖2
≤ λmax((γP ⊗Q+ Inc)

−1(γP ⊗Q)1/2) ·
√
γCh‖h∗‖2

=
√
γChλmax

( √
γ

γ + 1
(ΛPQ + Inc)

−1Λ
1/2
PQ

)
‖h∗‖2

≤
√
Chλmax((ΛPQ + Inc)

−1Λ
1/2
PQ)‖h∗‖2

≤ 1

2

√
Ch‖h∗‖2,
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where the last inequality is because the eigenvalues of (ΛPQ + Inc)
−1Λ

1/2
PQ are

√
λPQ,1

λPQ,1+1 , . . . ,

√
λPQ,nc

λPQ,nc+1 and

supλ≥0

√
λ

λ+ 1
=

1

2
.

On the other hand,

E‖(M + Inc)
−1e‖22 ≤ (λmax((M + Inc)

−1))2 · E‖e‖22

=
E[e>e]

(λmin(M + Inc))2

≤ l̃σ2
l + ũσ2

u.

Hence,

E‖h− h∗‖22 ≤
1

4
Ch‖h∗‖22 + l̃σ2

l + ũσ2
u,

which completes the proof of inequality (20).

Next, consider MAVR in optimization (9). We would have

h− h∗ = (M − ρInc)−1y − h∗

= (M − ρInc)−1(h∗ + e)− (M − ρInc)−1(M − ρInc)h∗

= −(M − ρInc)−1(M − (ρ+ 1)Inc)h
∗ + (M − ρInc)−1e.

In general, E[(M − ρInc)−1e] 6= 0nc since ρ depends on e. Furthermore, M − (ρ+ 1)Inc may have negative eigenvalues
when γλPQ,1 − 1 < ρ ≤ γλPQ,1 − Cγ,τ . Taking the expectation of ‖h− h∗‖2,

E‖h− h∗‖2 ≤ E‖(M − ρInc)−1(M − (ρ+ 1)Inc)h
∗‖2 + E‖(M − ρInc)−1e‖2

≤ E‖(M − ρInc)−1Mh∗‖2 + E[|ρ+ 1|‖(M − ρInc)−1h∗‖2] + E‖(M − ρInc)−1e‖2.

Subsequently,

E‖(M − ρInc)−1Mh∗‖2 ≤ supρ λmax((M − ρInc)−1M1/2) ·
√
γCh‖h∗‖2

= supρ
√
Chλmax

(
(ΛPQ − ρ/γInc)−1Λ

1/2
PQ

)
‖h∗‖2

≤
√
Ch‖h∗‖2 · supρ≤γλPQ,1−Cγ,τ supλ≥λPQ,1

( √
λ

λ− ρ/γ

)

≤
√
ChγλPQ,1
Cγ,τ

‖h∗‖2.

On the other hand,

E[|ρ+ 1|‖(M − ρInc)−1h∗‖2] ≤ E|ρ+ 1| · supρ λmax((M − ρInc)−1)‖h∗‖2

≤ ‖h
∗‖2

Cγ,τ
· Emax{−ρ− 1, supρ ρ+ 1}

≤ ‖h
∗‖2

Cγ,τ
·max{E‖y‖2/τ − γλPQ,1 − 1, γλPQ,1 − Cγ,τ + 1}

=
‖h∗‖2
Cγ,τ

·max{
√
l̃/τ − γλPQ,1 − 1, γλPQ,1 − Cγ,τ + 1}.

where we used the fact that supρ ρ is independent of e, and applied Jensen’s inequality to obtain that

E‖y‖2 ≤
√
E‖y‖22 ≤

√
l̃.
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In the end,

E‖(M − ρInc)−1e‖2 ≤ supρ λmax((M − ρInc)−1) · E‖e‖2

≤ E
√
e>e

Cγ,τ

≤
√

E[e>e]

Cγ,τ

=

√
l̃σ2
l + ũσ2

u

Cγ,τ
,

where the third inequality is due to Jensen’s inequality. Therefore, inequality (19) follows by combining the three upper
bounds of expectations.


