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Supplementary Material

A. Proof of Theorem 4.1

Proof. When L is finite, the inner product between the fea-
ture representation is given by
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Since wy, 1 <1 < L is a random vector, the above quan-
tity is the empirical mean of L random variables, 21, ..., 21,
where z; = (xTAw;);(y*Aw;);. Furthermore since
w;’s are independent and identically distributed, z;’s be-
ing functions of w;’s are also independent and identically
distributed. Hence, by law of large numbers, as L — +o0o,
the empirical mean of z;’s converges to the true mean, that
is,
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lows from the derivation of arc-cosine kernel by Cho &
Saul (2010). O
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B. Proof of Theorem 5.1

Proof. After T iteration of Algorithm 1, the approximate
kernel matrix k., (x,y) is given by
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Furthermore, the mean and variance of the approximate

kernel after T iterations is given by

m(x,y) = TLP ZZE T Awgg) (qJTAwtg)Jr}
0
= m Z Z ks (pis q5)
tl i
1
=5 Z ks (pis q5)
1,7

= k(x Y).
1
T2L2 Zvar 72 Z( ?Awt¢)+(quAww)+)
i

< T2L2]2 Z Z var( Aww (q;rAw“>+)

U(X7 Y) =

= m Z var((p; Aw)4(q; Aw)y)
1,7
Since wvar(X) = EX? (EX)? < EX?
var((piT Aw) 4 (¢;T Aw) ) < E[(p] Aw)3 (qf Aw)3].

From equation (7) of Cho et al. (?), the same quantity can
be rewritten as
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Hence, by applying Chebyshev’s inequality to the quantity
kap(x,y), we get
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Hence, as T' — oo, approximate kernel entry converges in
probability to the exact kernel entry. Rewriting the above
statement, we can say that with probability at least 1 — 6.
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