Margins, Kernels and Non-linear Smoothed Perceptrons

Aaditya Ramdas, Javier Peña
Proceedings of the 31st International Conference on Machine Learning, PMLR 32(1):244-252, 2014.

Abstract

We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin (ρ) in an RKHS and use the Representer Theorem to rephrase it in terms of a Mahalanobis dot-product/semi-norm associated with the kernel’s (normalized and signed) Gram matrix. We derive an accelerated smoothed algorithm with a convergence rate of \tfrac\sqrt \log nρ given n separable points, which is strikingly similar to the classical kernelized Perceptron algorithm whose rate is \tfrac1ρ^2. When no such classifier exists, we prove a version of Gordan’s separation theorem for RKHSs, and give a reinterpretation of negative margins. This allows us to give guarantees for a primal-dual algorithm that halts in \min{\tfrac\sqrt n|ρ|, \tfrac\sqrt nε} iterations with a perfect separator in the RKHS if the primal is feasible or a dual ε-certificate of near-infeasibility.

Cite this Paper


BibTeX
@InProceedings{pmlr-v32-ramdas14, title = {Margins, Kernels and Non-linear Smoothed Perceptrons}, author = {Ramdas, Aaditya and Peña, Javier}, booktitle = {Proceedings of the 31st International Conference on Machine Learning}, pages = {244--252}, year = {2014}, editor = {Xing, Eric P. and Jebara, Tony}, volume = {32}, number = {1}, series = {Proceedings of Machine Learning Research}, address = {Bejing, China}, month = {22--24 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v32/ramdas14.pdf}, url = {https://proceedings.mlr.press/v32/ramdas14.html}, abstract = {We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin (ρ) in an RKHS and use the Representer Theorem to rephrase it in terms of a Mahalanobis dot-product/semi-norm associated with the kernel’s (normalized and signed) Gram matrix. We derive an accelerated smoothed algorithm with a convergence rate of \tfrac\sqrt \log nρ given n separable points, which is strikingly similar to the classical kernelized Perceptron algorithm whose rate is \tfrac1ρ^2. When no such classifier exists, we prove a version of Gordan’s separation theorem for RKHSs, and give a reinterpretation of negative margins. This allows us to give guarantees for a primal-dual algorithm that halts in \min{\tfrac\sqrt n|ρ|, \tfrac\sqrt nε} iterations with a perfect separator in the RKHS if the primal is feasible or a dual ε-certificate of near-infeasibility.} }
Endnote
%0 Conference Paper %T Margins, Kernels and Non-linear Smoothed Perceptrons %A Aaditya Ramdas %A Javier Peña %B Proceedings of the 31st International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2014 %E Eric P. Xing %E Tony Jebara %F pmlr-v32-ramdas14 %I PMLR %P 244--252 %U https://proceedings.mlr.press/v32/ramdas14.html %V 32 %N 1 %X We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin (ρ) in an RKHS and use the Representer Theorem to rephrase it in terms of a Mahalanobis dot-product/semi-norm associated with the kernel’s (normalized and signed) Gram matrix. We derive an accelerated smoothed algorithm with a convergence rate of \tfrac\sqrt \log nρ given n separable points, which is strikingly similar to the classical kernelized Perceptron algorithm whose rate is \tfrac1ρ^2. When no such classifier exists, we prove a version of Gordan’s separation theorem for RKHSs, and give a reinterpretation of negative margins. This allows us to give guarantees for a primal-dual algorithm that halts in \min{\tfrac\sqrt n|ρ|, \tfrac\sqrt nε} iterations with a perfect separator in the RKHS if the primal is feasible or a dual ε-certificate of near-infeasibility.
RIS
TY - CPAPER TI - Margins, Kernels and Non-linear Smoothed Perceptrons AU - Aaditya Ramdas AU - Javier Peña BT - Proceedings of the 31st International Conference on Machine Learning DA - 2014/01/27 ED - Eric P. Xing ED - Tony Jebara ID - pmlr-v32-ramdas14 PB - PMLR DP - Proceedings of Machine Learning Research VL - 32 IS - 1 SP - 244 EP - 252 L1 - http://proceedings.mlr.press/v32/ramdas14.pdf UR - https://proceedings.mlr.press/v32/ramdas14.html AB - We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin (ρ) in an RKHS and use the Representer Theorem to rephrase it in terms of a Mahalanobis dot-product/semi-norm associated with the kernel’s (normalized and signed) Gram matrix. We derive an accelerated smoothed algorithm with a convergence rate of \tfrac\sqrt \log nρ given n separable points, which is strikingly similar to the classical kernelized Perceptron algorithm whose rate is \tfrac1ρ^2. When no such classifier exists, we prove a version of Gordan’s separation theorem for RKHSs, and give a reinterpretation of negative margins. This allows us to give guarantees for a primal-dual algorithm that halts in \min{\tfrac\sqrt n|ρ|, \tfrac\sqrt nε} iterations with a perfect separator in the RKHS if the primal is feasible or a dual ε-certificate of near-infeasibility. ER -
APA
Ramdas, A. & Peña, J.. (2014). Margins, Kernels and Non-linear Smoothed Perceptrons. Proceedings of the 31st International Conference on Machine Learning, in Proceedings of Machine Learning Research 32(1):244-252 Available from https://proceedings.mlr.press/v32/ramdas14.html.

Related Material