
Kernel Adaptive Metropolis Hastings

A. Proofs
Proposition 1. Let k be a differentiable positive definite kernel. Then∇xk(x, x)|x=y − 2∇xk(x, y)|x=y = 0.

Proof. Since k is a positive definite kernel there exists a Hilbert space H and a feature map ϕ : Rd → H, such that
k(x, x′) = 〈ϕ(x), ϕ(x′)〉H. Consider first the map τ : Rd → R, defined by τ(x) = k(x, x). We write τ = ψ ◦ ϕ, where
ψ : H → R, ψ(f) = ‖f‖2H .We can obtain∇xk(x, x)|x=y from the Fréchet derivativeDτ(y) ∈ B(Rd,R) of τ at y, which
to each y ∈ Rd associates a bounded linear operator from Rd to R (Steinwart & Christmann, 2008, Definition A.5.14). By
the chain rule for

Fréchet derivatives (Steinwart & Christmann, 2008, Lemma A.5.15(b)), the value of Dτ(y) at some x′ ∈ Rd is

[Dτ(y)] (x′) = [Dψ (ϕ(y)) ◦Dϕ(y)] (x′),

where Dϕ(y) ∈ B(Rd,H), and Dψ (ϕ(y)) ∈ B(H,R). The derivative Dϕ of the feature map exists whenever k is a
differentiable function (Steinwart & Christmann, 2008, Section 4.3). It is readily shown that Dψ [ϕ(y)] = 2 〈ϕ(y), ·〉H, so
that

[Dτ(y)] (x′) = 2 〈ϕ(y), [Dϕ(y)] (x′)〉H .

Next, we consider the map κy(x) = k(x, y) = 〈ϕ(x), ϕ(y)〉H, i.e., κy = ψy ◦ ϕ where ψy(f) = 〈f, ϕ(y)〉H. Since ψy is
a linear scalar function onH, Dψy (f) = 〈ϕ(y), ·〉H. Again, by the chain rule:

[Dκy(y)] (x′) = [Dψy (ϕ(y)) ◦Dϕ(y)] (x′)

= 〈ϕ(y), [Dϕ(y)] (x′)〉H ,

and thus (Dτ(y)− 2Dκy(y)) (x′) = 0, for all x′ ∈ Rd, and we obtain equality of operators. Since Fréchet
derivatives can also be written as inner products with the gradients, (∇xk(x, x)|x=y − 2∇xk(x, y)|x=y)

>
x′ =

(Dτ(y)− 2Dκy(y)) (x′) = 0, ∀x′ ∈ Rd, which proves the claim.

Proposition 2. qz(·|y) = N (y, γ2I + ν2Mz,yHM
>
z,y).
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leads to

qz(x∗|y) =
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This is just a d-dimensional Gaussian density where both the mean and covariance will, in general, depend on y. Let us
consider the exponent
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where R−1 = 1
γ2 (I − 1

γ2Mz,yHΣHM>z,y). We can simplify the covariance R using the Woodbury identity to obtain:
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Therefore, the proposal density is qz(·|y) = N (y, γ2I + ν2Mz,yHM
>
z,y).

B. Further details on synthetic experiments
Proposal contours for the Flower target. The d-dimensional flower target F(r0, A, ω, σ) is given by

F(x; r0, A, ω, σ) = exp

(
−
√
x2

1 + x2
2 − r0 −A cos (ωatan2 (x2, x1))

2σ2

)
N (x3:d; 0, I).

This distribution concentrates around the r0-circle with a periodic perturbation (with amplitude A and frequency ω) in the
first two dimensions. For A = 0, we obtain a band around the r0-circle, which we term the ring target. Figure 6 gives the
contour plots of the MCMC Kameleon proposal distributions on two instances of the flower target.

Convergence statistics for the Banana target. Figure 7 illustrates how the norm of the mean and quantile deviation
(shown for 0.5-quantile) for the strongly twisted Banana target decrease as a function of the number of iterations. This
shows that the trends observed in the main text persist along the evolution of the whole chain.

C. Principal Components Proposals
An alternative approach to the standard adaptive Metropolis, discussed in Andrieu & Thoms (2008, Algorithm 8), is to
extract m ≤ d principal eigenvalue-eigenvector pairs {(λj , vj)}mj=1 from the estimated covariance matrix Σz and use the
proposal that takes form of a mixture of one-dimensional random walks along the principal eigendirections

qz (·|y) =

m∑

j=1

ωjN (y, ν2
j λjvjv

>
j ). (7)



Kernel Adaptive Metropolis Hastings

Figure 6. 95% contours (red) of proposal distributions evaluated at a number of points, for the flower and the ring target. Underneath are
the density heatmaps, and the samples (blue) used to construct the proposals.
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Figure 7. Comparison of SM, AM-FS, AM-LS and KAMH-LS in terms of the norm of the estimated mean (left) and in terms of the
deviation from the 0.5-quantile (right) on the strongly twisted Banana distribution. The results are averaged over 20 chains for each
sampler. Error bars represent 80%-confidence intervals.
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In other words, given the current chain state y, the j-th principal eigendirection is chosen with probability ωj (choice
ωj = λj/

∑m
l=1 λl is suggested), and the proposed point is

x∗ = y + ρνj
√
λjvj , (8)

with ρ ∼ N (0, 1). Note that each eigendirection may have a different scaling factor νj in addition to the scaling with the
eigenvalue.

We can consider an analogous version of the update (8) performed in the RKHS

f = k(·, y) + ρνj
√
λjvj , (9)

with m ≤ n principal eigenvalue-eigenfunction pairs {(λj ,vj)}mj=1. It is readily shown that the eigenfunctions vj =
∑n
i=1 α̃
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has form
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where β(j) = ρνj
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(j). But α(j) =
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(j) are themselves the (unit norm) eigenvectors of HKH, as
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2
= 1. Therefore, the appropriate scaling with eigenvalues is already included in the β-coefficients, just like in

the MCMC Kameleon, where the β-coefficients are isotropic.

Now, we can construct the MCMC PCA-Kameleon by simply substituting β-coefficients with ρνjα(j), where j is the
selected eigendirection, and νj is the scaling factor associated to the j-th eigendirection. We have the following steps:

1. Perform eigendecomposition of HKH to obtain the m ≤ n eigenvectors {αj}mj=1 .

2. Draw j ∼ Discrete [ω1, . . . , ωm]

3. ρ ∼ N (0, 1)

4. x∗|y, ρ, j ∼ N (y + ρνjMz,yHα
(j), γ2I) (d× 1 normal in the original space)

Similarly as before, we can simplify the proposal by integrating out the scale ρ of the moves in the RKHS.

Proposition 3. qz(·|y) =
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we integrate out ρ to obtain:
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The claim follows after summing over the choice j of the eigendirection (w.p. ωj).


