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Appendix

9. Symmetrization
We presented the kernel algorithm for learning the multi-view latent variable model where the views have identical con-
ditional distributions. In this section, we will extend it to the general case where the views are different. Without loss of
generality, we will consider recover the operator µX3|h for conditional distribution P(X

3

|h). The same strategy applies to
other views. The idea is to reduce the multi-view case to the identical-view case based on a method by (Anandkumar et al.,
2012b).
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Based on these matrices, we could reduce to a single view
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Assume the leading k eigenvectors ⌫k lie in the span of the column of ⌥, i.e., ⌫k = ⌥�k where �k 2 Rm⇥1
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Then, we symmetrize and whiten the third-order embedding
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10. Robust Tensor Power Method
We recap the robust tensor power method for finding the tensor eigen-pairs in Algorithm 2, analyzed in detail in (Anand-
kumar et al., 2013a) and (Anandkumar et al., 2012a). The method computes the eigenvectors of a tensor through deflation,
using a set of initialization vectors. Here, we employ random initialization vectors. This can be replaced with better ini-
tialization vectors, in certain settings, e.g. in the community model, the neighborhood vectors provide better initialization
and lead to stronger guarantees (Anandkumar et al., 2013a). Given the initialization vector, the method then runs a tensor
power update, and runs for N iterations to obtain an eigenvector. The successive eigenvectors are obtained via deflation.

Algorithm 2 {�,M} TensorEigen(T , {vi}i2[k], N)

Input: Tensor T 2 Rk⇥k⇥k, set of k initialization vectors {vi}i2[k], number of iterations N .
Output: the estimated eigenvalue/eigenvector pairs {�,M}, where � = (�
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, . . . ,�k)> is the vector of eigenvalues and
M = (v

1

, . . . , vk) is the matrix of eigenvectors.
for i = 1 to k do

for ⌧ = 1 to k do
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 v⌧ .
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end for
Let ⌧⇤ := argmax⌧2L{eT (✓(⌧)N , ✓(⌧)N , ✓(⌧)N )}.
Do N power iteration updates starting from ✓(⌧

⇤
)

N to obtain eigenvector estimate vi, and set �i := eT (vi, vi, vi).
end for
return the estimated eigenvalue/eigenvectors (�,M).

11. Proof of Theorem 2
11.1. Recap of Perturbation Bounds for the Tensor Power Method

We now recap the result of Anandkumar et al. (2013a, Thm. 13) that establishes bounds on the eigen-estimates under good
initialization vectors for the above procedure. Let T =

P
i2[k] �ivi, where vi are orthonormal vectors and �

1

� �
2

�
. . .�k. Let bT = T + E be the perturbed tensor with kEk  ✏T . Recall that N denotes the number of iterations of the
tensor power method. We call an initialization vector u to be (�, R

0

)-good if there exists vi such that hu, vii > R
0

and
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| hu, vii |�maxj<i | hu, vji | > �| hu, vii |. Choose � = 1/100.

Theorem 3 There exists universal constants C
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Assume there is at least one good initialization vector corresponding to each vi, i 2 [k]. The parameter ⇠ for choosing
deflation vectors in each iteration of the tensor power method in Procedure 2 is chosen as ⇠ � 25✏T . We obtain eigenvalue-
eigenvector pairs (ˆ�
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, v̂
2
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In the sequel, we establish concentration bounds that allows us to translate the above condition on tensor perturbation (14)
to sample complexity bounds.

11.2. Concentration Bounds

11.2.1. ANALYSIS OF WHITENING

Recall that we use the covariance operator CX1X2 for whitening the 3rd order embedding CX1,X2,X3 . We first analyze the
perturbation in whitening when sample estimates are employed.

Let bCX1X2 denote the sample covariance operator between variables X
1

and X
2

, and let

B := 0.5(bCX1X2 +
bC>
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) =
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whitening matrix is given by cW :=
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k . Now cW whitens Bk, i.e. cW>Bk

cW = I .

Now consider the SVD of
cW>CX1X2

cW = ADA>,
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cWAD�1/2A>,
and W whitens CX1X2 since W>CX1X2W = I . Recall that by exchangeability assumption,

CX1,X2 =
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⇡j · µX|j ⌦ µX|j = M Diag(⇡)M>, (15)

where the j th column of M , Mj = µX|j .

We now establish the following perturbation bound on the whitening procedure. Recall from (25), ✏pairs :=���CX1,X2 � bCX1,X2

���. Let �
1

(·) � �
2

(·) . . . denote the singular values of an operator.

Lemma 4 (Whitening perturbation) Assuming that ✏pairs < 0.5�k(CX1X2),

✏W := kDiag(⇡)1/2M>
(

cW �W)k  4✏pairs
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(16)

Remark: Note that �k(CX1X2) = �2

k(M).

Proof: The proof is along the lines of Lemma 16 of (Anandkumar et al., 2013a), but adapted to whitening using the
covariance operator here.

kDiag(⇡)1/2M>
(

cW �W)k = kDiag(⇡)1/2M>W (AD1/2A> � I)k
 kDiag(⇡)1/2M>WkkD1/2 � Ik.
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Since W whitens CX1X2 = M Diag(⇡)M>, we have that kDiag(⇡)1/2M>Wk = 1. Now we control kD1/2 � Ik. Let
eE := CX1,X2 � Bk, where recall that B = 0.5(bCX1,X2 +

bC>
X1X2

) and Bk is its restriction to top-k singular values. Thus,
we have k eEk  ✏pairs + �k+1

(B)  2✏pairs. We now have
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11.2.2. TENSOR CONCENTRATION BOUNDS

Recall that the whitened tensor from samples is given by
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(

cW>
)⇥

2

(

cW>
)⇥

3

(

cW>
).

We want to establish its perturbation from the whitened tensor using exact statistics
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Let ✏triples := kbCX1X2X3 � CX1X2X3k. Let ⇡
min

:= minh2[k] ⇡h.

Lemma 5 (Tensor perturbation bound) Assuming that ✏pairs < 0.5�k(CX1X2), we have

✏T := kbT � T k  2

p
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⇡
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Proof: Define intermediate tensor
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using the bound on kcWk in Lemma 4. For the other term, first note that
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Proof of Theorem 2: We obtain a condition on the above perturbation ✏T in (18) by applying Theorem 3 as ✏T 
C

1

�
min

R2

0

. Here, we have �i = 1/
p
⇡i � 1. For random initialization, we have that R

0

⇠ 1/
p
k, with probability 1 � �

using poly(k) poly(1/�) trials, see Thm. 5.1 in (Anandkumar et al., 2012a). Thus, we require that ✏T  C1
k . Summarizing,
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we require for the following conditions to hold

✏pairs  0.5�k(CX1X2), ✏T  C
1

k
. (19)

We now substitute for ✏pairs and ✏triples in (18) using Lemma 6 and Lemma 7.

From Lemma 6, we have that
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with probability 1� �. It is required that ✏pairs < 0.5�k(CX1,X2), which yields that

m >
32⇢2 log 2

�

�2

k(CX1,X2)

. (20)

Further we require that ✏T  C
1

/k, which implies that each of the terms in (18) is less than C/k, for some constant C.
Thus, we have
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for some other constant C
4

with probability 1� �. Thus, we have the result in Theorem 2.

2

11.2.3. CONCENTRATION BOUNDS FOR EMPIRICAL OPERATORS

Concentration results for the singular value decomposition of empirical operators.

Lemma 6 (Concentration bounds for pairs) Let ⇢ := supx2⌦

k(x, x), and k · k be the Hilbert-Schmidt norm, we have
for
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��� , (21)
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Proof We will use similar arguments as in (Rosasco et al., 2010) which deals with symmetric operator. Let ⇠i be defined
as

⇠i = �(xi
1

)⌦ �(xi
2

)� CX1,X2 . (23)

It is easy to see that E[⇠i] = 0. Further, we have
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2
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k(x
1

, x
1

)k(x
2

, x
2

) 6 ⇢2, (24)

which implies that kCX1X2k 6 ⇢, and k⇠ik 6 2⇢. The result then follows from the Hoeffding’s inequality in Hilbert space.

Similarly, we have the concentration bound for 3rd order embedding.
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Lemma 7 (Concentration bounds for triples) Let ⇢ := supx2⌦

k(x, x), and k · k be the Hilbert-Schmidt norm, we have
for
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Proof We will use similar arguments as in (Rosasco et al., 2010) which deals with symmetric operator. Let ⇠i be defined
as

⇠i = �(xi
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)⌦ �(xi
2
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3

)� CX1X2X3 . (27)

It is easy to see that E[⇠i] = 0. Further, we have
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3

, x
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which implies that kCX1X2X3k 6 ⇢3/2, and k⇠ik 6 2⇢3/2. The result then follows from the Hoeffding’s inequality in
Hilbert space.

12. Experiment on Single Conditional Distribution
We also did some experiments for three-dimensional synthetic data that each view has the same conditional distribution.
We generated the data from two settings:

1. Mixture of Gaussian conditional density;

2. Mixture of Gaussian and shifted Gamma conditional density.

The mixture proportion and other experiment settings are exact same as the experiment in the main text. The only difference
is that the conditional densities for each view here are the identical. We use the same measure to evaluate the performance.
The empirical results are plotted in Figure 5.

As we expected, the behavior of the proposed method is similar to the results in different conditional densities case. In
mixture of Gaussians, our algorithm converges to the EM GMM resuls. And in the mixture of Gaussian/shift Gamma, our
algorithm consistently better to other alternatives in most cases, except k = 3 where our method achieve comparable to
nonparametric EM algorithm.
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Figure 5. (a)-(d) Mixture of Gaussian distributions with k = 2, 3, 4, 8 components. (e)-(h) Mixture of Gaussian/Gamma distribution
with k = 2, 3, 4, 8. For the former case, the performance of kernel spectral algorithm converge to those of EM algorithm for mixture
of Gaussian model. For both cases, the performance of kernel spectral algorithm are consistently the best or comparable. Spherical
Gaussian spectral algorithm does not work for k = 4, 8, and hence not plotted.


