
Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

Appendix
This appendix contains several pieces of exposition that were removed from the main text due to space constraints. First,
in Appendix A, we provide several properties of Fenchel conjugates, which we hope will serve as a useful reference. In
Appendix B, we provide proofs for results that were stated without proof in the main text. In Appendix C, we re-prove one
of these results in the vector case for the convenience of readers who do not wish to read through matrix manipulations. In
Appendix D, we generalize the exponentiated gradient results from the simplex case to the unconstrained case. Finally, in
Appendix E, we show how to adaptively control the step size η in our algorithms to obtain regret almost as good as if the
optimal η were known in advance.

A. Properties of Fenchel Conjugates
Throughout this paper we make extensive use of properties of Fenchel conjugates. We provide them here for reference. In
all cases we assume that ψ is a convex function. We assume that the argument w to ψ is constrained to lie in some convex
set S.

A.1. General Properties

Definition. The Fenchel conjugate ψ∗(β) of a function ψ(w) is defined as ψ∗(β)
def
= supw∈S w

>β − ψ(w).

Gradient. Let w be the maximizing vector in the preceding definition. Then w is a subgradient of ψ∗ at β. If ψ∗ is
differentiable then

∇ψ∗(β) = arg max
w∈S

w>β − ψ(w), (30)

and in particular∇ψ∗(β) ∈ S for all β.

Translations. For any vector c, define ψc(w) to be ψ(w)− w>c. Then ψ∗c (β) = ψ∗(β + c).

A.2. Calculations (vector case)

Simplex. Let S = ∆n and ψ(w) =
∑
i=1 wi log(wi). This choice of ψ is also called the negative entropy (as well as,

somewhat confusingly, an entropic regularizer). Then we have ψ∗(β) = log(
∑n
i=1 exp(βi)) and∇ψ∗(β)i = exp(βi)∑n

j=1 exp(βj) .

To see the latter, we note that applying the KKT conditions to w>β − ψ(w) implies that the maximizer (and hence the
gradient ∇ψ∗(β)) satisfies βi = log(wi) + 1 + λ for some scalar λ, hence wi ∝ exp(βi), and so ∇ψ∗(βi) = wi =

exp(βi)∑
j exp(βj) . Computing ψ∗(β) now only involves evaluating w>β − ψ(w) at its maximizing value, yielding (where we

define Zβ as
∑
j exp(βj))

ψ∗(β) =

n∑
i=1

[
βi

exp(βi)

Zβ
− log(exp(βi)/Zβ)

exp(βi)

Zβ

]
(31)

=

n∑
i=1

exp(βi)

Zβ
log(Zβ) (32)

= log(Zβ), (33)

which completes the calculation.

Non-negative orthant. If instead S is the non-negative orthant and we now take ψ(w) =
∑n
i=1 wi log(wi), we will have

ψ∗(β) =
∑n
i=1 exp(βi) and ∇ψ∗(β)i = exp(βi).

To see this, again apply the KKT conditions to w>β − ψ(w), which imply that the maximizing value of w satisfies

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

βi = log(wi), and hence∇ψ∗(β)i = wi = exp(βi). Evaluating w>β − ψ(w) at this point yields

ψ∗(β) =

n∑
i=1

[βi exp(βi)− βi exp(βi) + exp(βi)] (34)

=

n∑
i=1

exp(βi), (35)

thus completing the calculation.

A.3. Calculations (matrix case)

Trace constrained. Let S = {W | W � 0, tr(W) = 1} and let ψ(W) = tr(W log(W)). This choice of ψ is called the
von-Neumann entropy. We have ψ∗(B) = log(tr(exp(B))) and ∇ψ∗(B) = exp(B)

tr(exp(B)) . Note that in this case ψ∗(B) is
defined as supW∈S tr(WB)− tr(W log(W)).

To calculate ∇ψ∗, note that the KKT conditions yield B = log(W) + (1 + λ)I for the maximizing value of W . Thus
W ∝ exp(B) and hence ∇ψ∗(B) = W = exp(B)

tr(exp(B)) . Defining ZB to be tr(exp(B)) and plugging back in yields

ψ∗(B) = tr(B exp(B))/ZB − tr(exp(B)[B − log(ZB)I])/ZB (36)
= tr(exp(B)) log(ZB)/ZB (37)
= log(ZB), (38)

which completes the calculations for the trace-constrained case.

Trace unconstrained. Let S = {W | W � 0} and let ψ(W) = tr(W log(W) −W). We have ψ∗(B) = tr(exp(B))
and ∇ψ∗(B) = exp(B).

To calculate ∇ψ∗, note that the KKT conditions yield B = log(W) and hence ∇ψ∗(B) = W = exp(B). Plugging back
in to ψ∗ yields

ψ∗(B) = tr(B exp(B))− tr(exp(B) log(exp(B))− exp(B)) (39)
= tr(exp(B)), (40)

which completes the calculations for the unconstrained case.

B. Deferred Proofs
In this section we prove all results stated in the main text that were deferred to the supplementary material.

Proof of Proposition 2.2. We will construct two sequences (zt)
T
t=1 such that exponentiated gradient with any fixed step

size η will perform poorly (Ω(
√
T)) on at least one of them. Our constructed sequences will involve n = 2 experts. In

both sequences, the first expert has zt,1 = 0 for all t, and zt,2 will satisfy
∑T
t=1 zt,2 ≥ 0 to ensure quasi-realizability.

Sequence 1. The second expert has loss zt,2 = (−1)t−1. Then
∑T
t=1 zt,2 is either 0 or 1 depending on the parity

of T , and in particular is non-negative. On odd-numbered rounds, wt =
[

1
2

1
2

]>
, and on even-numbered rounds,

wt =
[

1
1+exp(−η)

1
1+exp(η)

]>
. Assume that η ≤ 1. The total loss (and hence regret) of the learner is then at least

bT
2 c∑

k=1

1

2
− 1

1 + exp(η)
=

⌊
T

2

⌋(
1

2
− 1

1 + exp(η)

)
(41)

≥
⌊
T

2

⌋(
1

2
− 1

2 + 2η

)
(42)

≥ 1

4

⌊
T

2

⌋
η. (43)

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

So, for any η ≤ 1, there is a quasi-realizable sequence with regret at least 1
4

⌊
T
2

⌋
η. Since (41) can be seen to be an

increasing function of η, we have a lower bound of 1
4

⌊
T
2

⌋
min(η, 1). The point is that for large η, the learner will pay

heavily because it switches around too much.

Sequence 2. On the other hand, we consider the sequence given by zt,2 = 1 for all t. Then wt,2 = 1
1+exp((t−1)η) , which

for t ≤
⌈

1
η

⌉
is at least 1

1+e . Therefore, the regret of the learner on this sequence is at least 1
1+e min

(
T, 1

η

)
. The point is

that for small η, the learner will pay heavily because it can’t decrease the weight on expert 2 fast enough.

Combining these together, we see that the first sequence inflicts a regret of Ω(
√
T) whenever η ≥ 1/

√
T , whereas the

second sequence inflicts a regret of Ω(1/
√
T) whenever η ≤ 1/

√
T . Since one of these two conditions on η must always

be satisfied, one of these sequences will always inflict regret Ω(1/
√
T), thus proving the proposition.

Proof of Proposition 4.1. As noted in the main text, the proof parallels Proposition 3.3, with the main new tool being the
Golden-Thompson inequality, which says that tr(exp(A+B)) ≤ tr(exp(A) exp(B)) (Golden, 1965; Thompson, 1965).

When ψ(W) = tr(W log(W)) and W is constrained to have trace 1, we have ψ∗(B) = log(tr(exp(B))) and ∇ψ∗(B) =
exp(B)

tr(exp(B)) , so that ∇ψ∗(Bt − ηMt) matches Wt as given in the proposition. So, again, we are performing an instance of
Algorithm 2 and it suffices to check that the condition of Corollary 3.2 is satisfied for At = (Zt −Mt)

2. To do so, we use
the Golden-Thompson inequality together with the fact that −X −X2 � log(I −X) for − 1

2I � X �
1
2I . We have

ψ∗(Bt − ηZt − η2At)

= log(tr(exp(Bt − ηZt − η2(Zt −Mt)
2)))

≤ log(tr(exp(Bt − ηMt) exp(−η(Zt −Mt)− η2(Zt −Mt)
2)))

≤ log(tr(exp(Bt − ηMt)(I − η(Zt −Mt))))

= log(tr(exp(Bt − ηMt))− η tr(exp(Bt − ηMt)(Zt −Mt)))

≤ log(tr(exp(Bt − ηMt)))− η
tr(exp(Bt − ηMt)(Zt −Mt))

tr(exp(Bt − ηMt))

= ψ∗(Bt − ηMt)− η〈∇ψ∗(Bt − ηMt), Zt −Mt〉.

This verifies the condition of Corollary 3.2, so that we have a regret bound of ψ∗(0)+ψ(U)
η + η

∑T
t=1 tr(UAt). Finally,

noting that ψ∗(0) = log(n), ψ(U) = tr(U log(U)) ≤ 0, and At = (Zt −Mt)
2 completes the proof.

Proof of Lemma 4.2. Write M ′ = M∗ +D. Then we have

(44)δ(M ′)2 +

T∑
t =1

(Zt −M ′)2

(45)= δ(M∗ +D)2 +

T∑
t=1

(Zt −M∗ −D)2

(46)= δ(M∗)2 +

T∑
t=1

(Zt −M∗)2 +

[
δM∗ +

T∑
t=1

(M∗ − Zt)

]
D +D

[
δM∗ +

T∑
t=1

(M∗ − Zt)

]
+ (T + δ)D2

(47)= δ(M∗)2 +

T∑
t=1

(Zt −M∗)2 + (T + δ)D2

(48)� δ(M∗)2 +

T∑
t=1

(Zt −M∗)2,

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

which completes the lemma.

Proof of Lemma 4.3. The proof is structurally identical to the vector case (see Hazan (2011) for a proof of the vector case).
We will prove the lemma by induction on T . Note that the lemma is equivalent to showing that

ψ(M1) +

T∑
t=1

ft(Mt+1) ≤K ψ(M) +

T∑
t=1

ft(M) (49)

for all M . In the base case T = 0, we have

ψ(M1) ≤K ψ(M), (50)

which follows from the fact that M1 is a global minimizer of ψ and hence ψ(M1) ≤K ψ(M) for all M . For the inductive
step, suppose that

T−1∑
t=1

ft(Mt+1) ≤K ψ(M) +

T−1∑
t=1

ft(M) (51)

for all M , and invoke this for the particular choice M = MT+1. Then we have

ψ(M1) +

T∑
t=1

ft(Mt+1) = ψ(M1) +

[
T−1∑
t=1

ft(Mt+1)

]
+ fT (MT+1) (52)

≤K ψ(MT+1) +

[
T−1∑
t=1

ft(MT+1)

]
+ fT (MT+1) (53)

= ψ(MT+1) +

T∑
t=1

ft(MT+1) (54)

≤K ψ(M) +

T∑
t=1

ft(M) (55)

for all M , where we use the fact that MT+1 is a global minimizer of ψ(M) +
∑T
t=1 ft(M) for the last inequality. This

completes the induction and hence the proof.

Proof of Corollary 4.4. The key tool is the matrix Young’s inequality: AB + BA � 1
γA

2 + γB2 for all symmetric A, B
and all γ > 0. (This follows immediately upon expanding (A/

√
γ −√γB)2 � 0.) We then note that, by Lemma 4.2, Mt

obeys Lemma 4.3 with ψ(M) = M2, ft(M) = (M − Zt)2, and K the cone of positive semidefinite matrices. Therefore:

(56)
T∑
t =1

(Zt −Mt)
2 − (Zt − Z̄)2 � Z̄2 +

T∑
t=1

(Zt −Mt)
2 − (Zt −Mt+1)2

(57)= Z̄2+

T∑
t=1

[
Zt(Mt+1−Mt) + (Mt+1−Mt)Zt +M2

t −M2
t+1

]

(58)= Z̄2 +M2
1 −M2

T+1 +

T∑
t=1

[Zt(Mt+1 −Mt) + (Mt+1 −Mt)Zt]

(59)= Z̄2 +M2
1 −M2

T+1 +

T∑
t=1

1

t+ 1
[Zt(Zt −Mt) + (Zt −Mt)Zt]

(since Mt+1 = 1
t+1Zt + t

t+1Mt)

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

(60)� I +

T∑
t=1

Z2
t

γ(t+ 1)2
+ γ(Zt −Mt)

2

(61)� I +
I

γ
+ γ

T∑
t=1

(Zt −Mt)
2.

(For the second-to-last inequality, note that M1 = 0 and hence M2
1 −M2

T+1 � 0.) Re-arranging yields

T∑
t=1

(Zt −Mt)
2 ≤ 1

1− γ

(
1 + γ

γ
I +

T∑
t=1

(Zt − Z̄)2

)
. (62)

Setting γ to 1
2 gives the desired result. Note that by instead setting γ to ε

2 , we can replace the constants 2 and 6 by 1 + ε
and 6

ε for any ε ≤ 1.

C. Improved Variance Bound
We claimed in Section 3 that we could obtain a regret bound in terms of 2Vi + 6 by using the optimistic prediction based
on mt = 1

t

∑t−1
s=1 zs. The following proposition establishes this. Its proof is essentially the same as that of Corollary 4.5,

and in fact is implied by Corollary 4.5. The only purpose of this section is to keep proofs accessible to readers who prefer
not to read through algebraic manipulations of matrices.

Proposition C.1. Suppose that we choose mt,i = 1
t

∑t−1
s=1 zs,i and that ‖zs‖∞≤ 1. Then for all i and all 0 < ε ≤ 1 we

have

T∑
t=1

(zt,i −mt,i)
2 ≤ 2

T∑
t=1

(zt,i −m∗i)2 + 6. (63)

Proof. Note that mt,i is the minimizer of m2
i +

∑t−1
s=1(zs,i −mi)

2. Therefore, by the FTRL Lemma (Hazan, 2011), we
have

T∑
t=1

(zt,i −mt,i)
2 − (zt,i −m∗i)2 ≤ (m∗i)

2 +

T∑
t=1

(zt,i −mt,i)
2 − (zt,i −mt+1,i)

2 (64)

= (m∗i)
2 +

T∑
t=1

2zt,i(mt+1,i −mt,i) +m2
t,i −m2

t+1,i (65)

= (m∗i)
2 +m2

1,i −m2
T+1,i +

T∑
t=1

2

t+ 1
zt,i(zt,i −mt,i) (66)

≤ 1 +

T∑
t=1

z2
t,i

γ(t+ 1)2
+ γ(zt,i −mt,i)

2 (67)

≤ 1 +
1

γ
+ γ

T∑
t=1

(zt,i −mt,i)
2. (68)

Re-arranging yields
T∑
t=1

(zt,i −mt,i)
2 ≤ 1

1− γ

(
1 + γ

γ
+

T∑
t=1

(zt,i −m∗i)2

)
. (69)

Setting γ to 1
2 then yields the desired result.

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

D. Bounds for Exponentiated Gradient in the Unconstrained Case
The main text contained an analysis of adaptive versions of the exponentiated gradient and matrix exponentiated gradient
algorithms. However, this analysis was for the case that the weights were constrained to the simplex (or that tr(W) = 1 in
the case of matrices). In Section 2 we promised to include an analysis of these algorithms in the unconstrained case, and
we do so here. Note that this “unconstrained case” still has the constraint w ≥ 0 (or W � 0 for matrices), although this is
not a serious limitation since we can split w into its positive and negative components (see Kivinen & Warmuth (1997) for
details).

The updates and proofs are almost identical. The major difference is in the initialization, where to obtain good bounds we
need to initialize β1,i to − log(n) rather than 0 (in the matrix case, we need to initialize B1 to − log(n)I). The complete
algorithms are shown below:

Exponentiated Gradient:

β1,i = − log(n) (70)
wt,i = exp(βt,i − ηmt,i)

βt+1,i = βt,i − ηzt,i − η2(zt,i −mt,i)
2

Matrix Exponentiated Gradient:

B1 = − log(n)I (71)
Wt = exp(Bt − ηMt)

Bt+1 = Bt − ηZt − η2(Zt −Mt)
2

We have the following regret bounds in the vector and matrix cases:

Proposition D.1. For ‖zt‖∞≤ 1, ‖mt‖∞≤ 1, and 0 < η ≤ 1
4 , the unconstrained exponentiated gradient updates (70)

achieve the bound

(72)Regret(u) ≤
1 + (log(n)− 1)‖u‖1 +

∑n
i=1 ui log(ui)

η
+ η

n∑
i=1

ui

T∑
t=1

(zt,i −mt,i)
2.

Proposition D.2. For ‖Zt‖op≤ 1, ‖Mt‖op≤ 1, and 0 < η ≤ 1
4 , the unconstrained matrix exponentiated gradient updates

(71) achieve the bound

(73)Regret(U) ≤ 1 + (log(n)−1) tr(U) + tr(U log(U))

η
+ η

T∑
t=1

tr(U(Zt −Mt)
2).

The proofs are basically identical to the proofs of Propositions 3.3 and 4.1, but we include them for completeness.

Proof of Proposition D.1. We note that, for ψ(w) =
∑n
i=1 wi log(wi)−wi andw constrained to be non-negative, ψ∗(β) =∑n

i=1 exp(βi) and ∇ψ∗(βt − ηmt) is equal to wt as defined in the proposition. It therefore suffices to check that the
condition of Corollary 3.2 is satisfied with at,i = (zt,i −mt,i)

2. We have

(74)ψ∗(βt − ηzt − η2at) =

n∑
i=1

exp(βt,i − ηzt,i − η2(zt,i −mt,i)
2)

(75)=

n∑
i=1

exp(βt,i − ηmt,i) exp(−η(zt,i −mt,i)− η2(zt,i −mt,i)
2)

(76)≤
n∑
i=1

exp(βt,i − ηmt,i)(1− η(zt,i −mt,i))

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

(77)=

n∑
i=1

exp(βt,i − ηmt,i)− η
n∑
i=1

exp(βt,i − ηmt,i)(zt,i −mt,i)

(78)= ψ∗(βt − ηmt)− η∇ψ∗(βt − ηmt)
>(zt −mt).

The one inequality we made use of was exp(−x − x2) ≤ 1 − x for |x|< 1
2 . This verifies the condition of Corollary 3.2,

yielding a regret bound of ψ
∗(β1)+ψ(u)−u>β1

η + η
∑n
i=1 u

>at. Finally, we note that ψ∗(β1) =
∑n
i=1 exp(− log(n)) = 1,

ψ(u)− u>β1 =
∑n
i=1 ui log(ui) + (log(n)− 1)ui, and at,i = (zt,i −mt,i)

2, which completes the proof.

Proof of Proposition D.2. When ψ(W) = tr(W log(W)−W) and W is constrained to be positive semidefinite, we have
ψ∗(B) = log(tr(exp(B))) and ∇ψ∗(B) = exp(B), so that ∇ψ∗(Bt − ηMt) matches Wt as given in the proposition.
So, again, it suffices to check that the condition of Corollary 3.2 is satisfied for At = (Zt −Mt)

2. To do so, we need to
make use of the Golden-Thompson inequality tr(exp(A + B)) � tr(exp(A) exp(B)) (Golden, 1965; Thompson, 1965),
together with the fact that −X −X2 � log(I −X) for − 1

2I � X �
1
2I . We then have

ψ∗(Bt − ηZt − η2At) = tr(exp(Bt − ηZt − η2(Zt −Mt)
2)) (79)

≤ tr(exp(Bt − ηMt) exp(−η(Zt −Mt)− η2(Zt −Mt)
2)) (80)

≤ tr(exp(Bt − ηMt)(I − η(Zt −Mt))) (81)
= tr(exp(Bt − ηMt))− η tr(exp(Bt − ηMt)(Zt −Mt)) (82)
= ψ∗(Bt − ηMt)− η〈∇ψ∗(Bt − ηMt), Zt −Mt〉. (83)

This verifies the condition of Corollary 3.2, so that we have a regret bound of ψ∗(B1)+ψ(U)−tr(B1U)
η + η

∑T
t=1 tr(UAt).

Finally, noting that ψ∗(B1) = tr(1
nI) = 1, ψ(U)− tr(B1U) = tr(U log(U)) + (log(n)−1) tr(U), and At = (Zt−Mt)

2

completes the proof.

E. Adaptive Step Size
In this section we show how to obtain an adaptive version of Algorithm 2, which relies on the standard doubling trick. The
adaptive algorithm is given as Algorithm 3. The regret bound of this procedure when applied to learning from experts is
worse than in the non-adaptive case, depending (in the language of Figure 1 and (24)) on maxiDi rather thanDi∗ (in other
words, the maximum path length of any expert rather than the path length of the best expert).

The algorithm basically calls Algorithm 2 repeatedly with different step sizes, halving the step size every time the regret
exceeds a certain bound. For this algorithm we require a bound B on the inner product term u>zt and a bound C on the
regularizer term in the regret bound. Cesa-Bianchi et al. (2007) proposed an adaptive step size scheme in the learning from
experts setting that does not require knowledge of B. It would be interesting to apply the same ideas here, but we have not
tried to do so, although the exposition given below follows Section 3.1 of the same paper.

The regret of Algorithm 3 is bounded in the following theorem:

Theorem E.1. Let ut ∈ arg minu u
>∑t

s=1 zs and let Qt = u>t
∑t
s=1 as. Let Q = max

(
B,maxTt=1Qt

)
. Then the

regret of Algorithm 3 is bounded as

Regret ≤ B
⌈

1 + log

(
Q

B

)⌉
+ 10

√
CQ. (84)

Proof. First note η is monotonically non-increasing across rounds, and decays by a factor of 2 every time it changes. We
can group the rounds based on what value of η was used in that round; in this way, Algorithm 3 is equivalent to running
several sub-algorithms, each of which is an instance of Algorithm 2. The total regret is then bounded above by the sum of
the regrets of these individual algorithms.

Now consider the rounds when η is equal to 2−j
√

C
B . Let tj be the final such round. By construction, we must have

u>t−1

∑t−1
s=1 as ≤ 4j+1B, or else we would have already decreased η by the next factor of 2. Let Regretj denote the regret

Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm

Algorithm 3 Adaptive Step Size Mirror Descent
Given: convex regularizer ψ, corrections at, hints mt, and β
Let B be any bound on maxTt=1 u

>zt
Let C be any upper bound on ψ∗(β1) + ψ(u)− u>β1

Q, η, t← B,
√

C
B , 1

while there are rounds remaining do
βt ← β

while
√

C
Q ≥

η
2 do

Choose wt = ∇ψ∗(βt − ηtmt)
Observe zt and suffer loss w>t zt
Update βt+1 = βt − ηtzt − η2

t at
Let ut ∈ arg minu u

>∑t
s=1 zs

Q← max(Q, u>t
∑t
s=1 as)

t← t+ 1
end while
η ← η

2
end while

of the sub-algorithm on this set of rounds. Note that it is bounded above by B plus the regret on all but the last of these
rounds. Then we have

Regretj ≤ B +
C

η
+ ηu>t−1

t−1∑
s=1

as (85)

= B + 2j
√
CB + 2−j4j+1

√
CB (86)

= B + 5 · 2j
√
CB (87)

≤ B + 5
√
CQtj . (88)

Note that
√
Qtj ≥ 2

√
Qtj−1

by construction. Then we have

Regret ≤
∑
j

Regretj (89)

≤
∑
j

B + 5
√
CQtj (90)

≤ B
⌈

1 + log

(
Q

B

)⌉
+ 10

√
CQ, (91)

as was to be shown.

