
Scaling Up Robust MDPs by Function Approximation -

Supplementary Material

1 A Divergent Example

We show that even if Assumption 2 fails for a single state x̃, and for that state there is no approximation
- i.e., there is a feature φ̃(x) = 1 {x = x̃} that is orthogonal to all other features, iteratively applying ΠTπ

may diverge.

Consider the following MDP with 3 states {s1, s2, s3}, zero rewards, and let the value function approximation

be (w1, w2, 2w2)
T

.

The Bellman operator for some v = (w1, w2, 2w2)
T

is

Tπv = γ

 pw2 + (1− p) 2w2

w1

w1


Consider an exploration policy (P̂ ) where p = 0.5, and therefore the steady state distribution of s2 and s3
are equal. Note that the only transition change (between the exploration policy and the true MDP) is in s1,
for which there is no approximation in the value function. The least squares regression of a vector (x1, x2)
onto (w2, 2w2) gives w2 = 1

5 (x1 + 2x2), and therefore the projected Bellman operator is

ΠTπv = γ

 2w2 − pw2
3
5w1
6
5w1

 ,

and in terms of w, we can write the result of applying ΠTπ as w′, and we have
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w′ = γ

(
0 (2− p)
3
5 0

)
w.

The eigenvalues of the above matrix are ±γ
√

15(2−p)
5 , and we have that for p < 2 − 5

3γ2 (For example

p = 0.1, γ = 0.95) the eigenvalues are outside the unit circle and the process of repeatedly applying ΠTπ

diverges.

2 Complexity of Solving the Inner Problem using SAA

We state a result of Shapiro & Nemirovski (2005) that bounds the sample complexity of SAA. Recall that
we approximate the solution of the problem

inf
θ∈Θ

Ep̃
[
pθ(x)

p̃(x)
φ(x)>wk

]
, (1)

using the solution of the SAA

inf
θ∈Θ

1

Ns

Ns∑
i=1

pθ(xi)

p̃(xi)
φ(xi)

>wk. (2)

Assume that Ep̃
[
pθ(x)
p̃(x) φ(x)>wk

]
is convex in θ, and that pθ(x)

p̃(x) φ(x)>wk is Lipschitz continuous on Θ with

constant L independent of x. Let D
.
= supθ,θ′∈Θ ‖θ′ − θ‖ denote the diameter of Θ. Then the following

sample complexity result holds.
Theorem 1. (Theorem 2 in Shapiro & Nemirovski 2005) For a sample size Ns that satisfies

Ns ≥ O(1)

(
DL

ε

)2 [
n log

(
DL

ε

)
+ log

(
O(1)

α

)]
we are guaranteed that every (ε/2)-optimal solution of the SAA problem (2) is an ε-optimal solution of the
true problem (1) with probability 1− α.

Theorem 1 bounds the number of samples required for constructing the SAA approximation (2). However,

one still needs to solve the SAA problem. When Ep̃
[
pθ(x)
p̃(x) φ(x)>wk

]
is convex and twice continuously

differentiable, the SAA may be solved efficiently using, e.g., interior point methods (Boyd & Vandenberghe,
2004).

3 Proof of Proposition 6

Proposition 2. The sequence {πi} generated by the general approximate robust policy iteration algorithm
satisfies

lim sup
i→∞

‖V πi − V ∗‖∞ ≤
ε+ 2γδ

(1− γ)2
.

Proof. The proof of Proposition 2.5.8 of Bertsekas (2012) holds provided that the operators Tπ and T are
both γ-contractions in the sup-norm and monotone. The contraction property was shown by Iyengar (2005).
We now show the monotonicity.
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Choose some policy π and ε′ > 0. Let v, v′ ∈ R|X | satisfy v(x) ≤ v′(x) for all x. Also let p̄x ∈ P(x, π(x))
such that p̄>x v

′ ≤ infp∈P(x,π(x)) p
>v′ + ε′. We have that for all x

inf
p∈P(x,π(x))

p>v′ + ε′ ≥ p̄>x v′ ≥ p̄>x v ≥ inf
p∈P(x,π(x))

p>v,

where the second inequality holds since by definition p̄x ≥ 0. Since ε′ was arbitrary we conclude that
infp∈P(x,π(x)) p

>v ≤ infp∈P(x,π(x)) p
>v′, therefore Tπv ≤ Tπv′, which proves the monotonicity of Tπ. Since

this holds for every π, it holds also for T .

4 Optimal Stopping Problems

Consider the optimal stopping problem setting, and let π̂ denote a policy that never chooses to terminate,
i.e., π̂(x) = 0, ∀x. We now show that if Assumption 2 is satisfied for π = π̂, then it is immediately satisfied
for all other policies.
Proposition 3. Consider an optimal stopping problem, and let Assumption 2 hold for π = π̂. Then, for
every policy π we have

γP (x′|x, π(x)) ≤ βP̂ (x′|x, π̂(x)), ∀P ∈ P, x ∈ X , x′ ∈ X . (3)

Proof. We prove by induction. Assume (3) holds for some π. Let π̃ be the same as π for all states except x̃, for
which π(x̃) = 0 and π̃(x̃) = 1. Then we have for all x 6= x̃ that P (x′|x, π̃(x)) = P (x′|x, π(x)), ∀P ∈ P. For
x̃, a transition to a terminal state occurs without uncertainty, namely P (x′|x̃, π̃(x̃)) = 0 ∀P ∈ P, x′ ∈ X ,
therefore (3) is satisfied with π replaced by π̃.

Since (3) is assumed to hold for π̂, by induction it holds for all π.

5 Optimistic MDPs

Interestingly, as was recognized by Iyengar (2005), results on robust MDPs may be extended to optimistic
MDPs. An optimistic MDP is similar to an RMDP, but the optimization goal is different. Here, instead of the
worst case performance, we seek the most optimistic value V +(x) = supπ

{
supP∈P V

π,P (x)
}

. In addition to
obtaining risk-seeking policies, optimistic MDPs have been used for efficient exploration, driving algorithms
such as UCRL2 Jaksch et al. (2010) by employing the principle of ‘optimism in the face of uncertainty’. Our
work may be important for large-scale implementations of such algorithms, by use of function approximation.
We also conjecture that the performance gap due to uncertainty V +(x)−V (x) may be important for feature
selection and model selection, tasks that are critical for truly large-scale applications.

For some x and u let us define the operator σ+
P(x,u) : R|X | → R as (cf. the definition of σP(x,u))

σ+
P(x,u)v

.
= sup

{
p>v : p ∈ P(x, u)]

}
.

All our results extend to optimistic MDPs, namely, by replacing the operator σP(x,u) with σ+
P(x,u). We now

show this for the proof of Proposition 3.

Proof. Fix x ∈ X , and assume that Tπy(x) ≤ Tπz(x). Choose some ε > 0, and Px ∈ P such that

EPx [z(x′)|x, π(x)] ≥ sup
P∈P

EP [z(x′)|x, π(x)]− ε. (4)
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Also, note that by definition

sup
P∈P

EP [y(x′)|x, π(x)] ≥ EPx [y(x′)|x, π(x)] . (5)

Now, we have

0 ≤ Tπz(x)− Tπy(x)

≤ (γEPx [z(x′)|x, π(x)] + γε)− (γEPx [y(x′)|x, π(x)])

= γEPx [z(x′)− y(x′)|x, π(x)] + γε

≤ βEP̂ [ |z(x′)− y(x′)| |x, π(x)] + γε,

where the second inequality is by (4) and (5), and the last inequality is by Assumption 2. Conversely, if

Tπy(x) ≥ Tπz(x), following the same procedure we obtain 0 ≤ Tπy(x)−Tπz(x) ≤ βEP̂ [ |z(x′)− y(x′)| |x, π(x)]+

γε, and we therefore conclude that |Tπy(x)− Tπz(x)| ≤ βEP̂ [ |y(x′)− z(x′)| |x, π(x)] + γε. Since ε was ar-

bitrary, we have that |Tπy(x)− Tπz(x)| ≤ βEP̂ [ |y(x′)− z(x′)| |x, π(x)] for all x, and therefore

‖Tπy − Tπz‖d ≤ β
∥∥∥P̂ |y − z|∥∥∥

d
≤ β ‖y − z‖d ,

where in last equality we used the well-known result that the state transition matrix P̂ is contracting in the
d-weighted Euclidean norm.

We now show that Proposition 6 also holds.

Proof. We need to show the monotonicity property.

Choose some policy π and ε′ > 0. Let v, v′ ∈ R|X | satisfy v(x) ≥ v′(x) for all x. Also let p̄x ∈ P(x, π(x))
such that p̄>x v

′ ≥ supp∈P(x,π(x)) p
>v′ − ε′. We have that for all x

sup
p∈P(x,π(x))

p>v′ − ε′ ≤ p̄>x v′ ≤ p̄>x v ≤ sup
p∈P(x,π(x))

p>v,

where the second inequality holds since by definition p̄x ≥ 0. Since ε′ was arbitrary we conclude that
supp∈P(x,π(x)) p

>v ≥ supp∈P(x,π(x)) p
>v′, therefore Tπv ≥ Tπv′, which proves the monotonicity of Tπ. Since

this holds for every π, it holds also for T .

6 Parameters for Option Trading Experiments

The parameters for the experiments in Section 6 were chosen to balance the different factors in the problem.
Specifically, we chose

Experiment Kput Kcall T γ fu fd p p1 p2 Ndata Nsim δ x0 Ntest
Put option 1 1.5 20 0.98 9/8 8/9 0.45 5 500 1 1 50,000
Put and call 1 1.5 20 0.98 9/8 8/9 0.45 3 500 1 1.25 50,000
Model mis-
specification

1 1.5 20 0.98 9/8 8/9 0.3 0.6 3 500 1 1.25 50,000

We used 2-Dimensional Gaussian RBF features with a uniform spacing ∆x = 0.4, ∆t = 6, and widths
σx = 0.235 and σt = 3.535. The outputs of the RBFs were normalized.
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7 Experiments with a Geometric Brownian Motion Model

In this section we consider the option trading domain of Section 6, where the price model follows a Geometric
Brownian Motion (GBM), a popular model for stock price fluctuations. In continuous time, a GBM obeys
the stochastic differential equation dxt = µxtdt+σxtdWt, where µ is the risk free interest rate, σ is the stock
volatility, and W is a standard Brownian motion. In discrete time, a GBM trajectory may be simulated by

xt+∆t = xt exp
{

(µ− σ2/2)∆t+ σ
√

∆tω
}

, where ω ∼ N (0, 1). Thus, xt+1/xt has a lognormal distribution

xt+∆t

xt
∼ lnN

(
∆t(µ− σ2/2), σ2∆t

)
.

In practice, the volatility is not known, but estimated from data. Thus, we construct the uncertainty set
as the 95% confidence intervals for the estimated volatility. Our empirical evaluation proceeds as follows.
In each experiment, we generate Ndata trajectories of length T from the true model M with parameters µ
and σ where µ is the risk-free interest rate. From these trajectories we estimate the volatility σ̂, and the
95% confidence intervals σ̂− and σ̂+ using the Matlab function lognfit, which constructs our uncertain
model Mrobust. We also build a model without uncertainty Mnominal by setting σ̂− = σ̂+ = σ̂. Using σ̂, we
then simulate Nsim trajectories of length T (this corresponds to a policy that never executes the option),
where x0 = K + ε, and ε is uniformly distributed in [−δ, δ]. These trajectories are used as input data for the
ARPI algorithm of Section 4. For solving the inner problem, we use the SAA method of Section 3.4 with
Ns samples, where we set p̃ to the lognormal distribution corresponding to σ̂+. The deterministic sampled
problem was solved using Matlab’s fminbnd method.

In Figure 1 we plot the tail distribution of the total reward R (from 20 independent experiments) obtained
by πrobust and πnominal for the put option scenario (cf. Section 6.2.2 of the main text). The results are
similar to the case of the Bernoulli price fluctuation model. These results confirm that our method scales
robust MDPs to truly large scale domains.

The parameters for this experiment were chosen to balance the different factors in the problem. Specifically,
we chose

Kput T µ σ ∆t γ Ns Ndata Nsim δ x0 Ntest
1 20 0.0025 3 0.01 0.9975 50 5 500 1 1 50,000

The RBFs were the same as in the experiments in the main text.
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Figure 1: Performance of robust vs. nominal policies. The tail distribution (complementary cumulative
distribution function) of the total reward R for the put option scenario, obtained from 20 independent
experiments.
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