
Supplementary Material for Local Ordinal Embedding

Yoshikazu Terada1,2 TERADA@SIGMATH.ES.OSAKA-U.AC.JP

1Graduate School of Engineering Science, Osaka University, Japan
2CiNet, National Institute of Information and Communications Technology, Japan.

Ulrike von Luxburg3 LUXBURG@INFORMATIK.UNI-HAMBURG.DE

3Department of Computer Science, University of Hamburg, Germany

Abstract
In this supplementary material, we provide the proof of Proposition 1 and the details about the derivation of the
majorizing function in Proposition 2. Moreover, a number of additional simulations are described.

1. Proof of Proposition 1

Proposition 1 (Scale parameter). Let δ1, δ2 > 0, δ1 6= δ2. If Xδ1 := argminErrsoft(X | p, δ1) is an optimal solution for
parameter δ1, then (δ2/δ1)Xδ1 is an optimal solution of argminErrsoft(X | p, δ2) with parameter δ2.

Proof. For any constant c > 0, we obviously have c2 Errsoft(X | p, δ) = Errsoft(cX | p, cδ) for all X ∈ Rn×p. Thus, for
all X ∈ Rn×p, we have (δ2/δ1)

2 Errsoft(X | p, δ1) = Errsoft((δ2/δ1)X | p, δ2). To obtain a contradiction, we assume
(δ2/δ1)Xδ1 does not achieve the minimal value of Errsoft(X | p, δ2), i.e.,

min
X∈Rn×p

Errsoft(X | p, δ2) < Errsoft((δ2/δ1)Xδ1 | p, δ2).

For all X1 and X2 satisfying Errsoft(X1 | p, δ1) < Errsoft(X2 | p, δ1) and all c > 0, we have

c2 Errsoft(X1 | p, δ1) < c2 Errsoft(X2 | p, δ1).

Then, we have

Errsoft((δ2/δ1)Xδ1 | p, δ2) =
(
δ2
δ1

)2

Errsoft(Xδ1 | p, δ1)

> min
X∈Rn×p

Errsoft(X | p, δ2)

=

(
δ2
δ1

)2

min
X∈Rn×p

Errsoft((δ1/δ2)X | p, δ1),

which contradicts Xδ1 := argminErrsoft(X | p, δ1).

2. Majorizing function and Majorization algorithm for SOE
First, we provide the detailed derivation of the majorizing function of the components of Errsoft (i.e., the proof of Propo-
sition 2) and then we describe a majorization algorithm for SOE.

Proceedings of the 31 st International Conference on Machine Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copyright
2014 by the author(s).

Supplementary Material for Local Ordinal Embedding

2.1. Majorizing the components of the objective function Errsoft

To majorize max [0, dij(X) + δ − dkl(X)]
2, we use the following majorization inequality (Groenen et al., 2006),

max[0, a1 − a2]2 ≤

{
2(a21 + a22)− 2(a1 + a2)(b1 + b2) + (b1 + b2)

2 if b1 ≥ b2,
2(a21 + a22)− 4a1b1 − 4a2b2 + 2(b21 + b22) if b1 < b2.

(1)

By this inequality, we have

max [0, dij(X) + δ − dkl(X)]
2 ≤

2
[
(dij(X) + δ)2 + d2kl(X)

]
− 2(dij(Y) + dkl(Y) + δ)(dij(X) + dkl(X) + δ)

+(dij(Y) + dkl(Y) + δ)2 if dij(Y) + δ ≥ dkl(Y),

2
[
(dij(X) + δ)2 + d2kl(X)

]
− 4(dij(Y) + δ)(dij(X) + δ)− 4dkl(Y)dkl(X)

+2
[
(dij(Y) + δ)2 + d2kl(Y)

]
if dij(X) + δ < dkl(X).

(2)

To obtain the final majorizing function, we majorize each term in the right side of the inequality.

2.1.1. CASE I: dij(Y) + δ ≥ dkl(Y)

In the case that dij(Y) + δ ≥ dkl(Y), we have

max [0, dij(X) + δ − dkl(X)]
2 ≤2d2ij(X) + 2d2kl(X)− 2(dij(Y) + dkl(Y)− δ)dij(X)

− 2(dij(Y) + dkl(Y) + δ)dkl(X) + (dij(Y) + dkl(Y) + δ)(dij(Y) + dkl(Y)− δ)
+ 2δ2.

Due to the presence of the terms dij(X) and dkl(X), the last term of the inequality is not quadratic in X . Note that
dij(Y) + dkl(Y) + δ > 0. By the Cauchy-Schwarz inequality

−dkl(X) ≤

{
− 1
dkl(Y) (xk − xl)

T (yk − yl) if dkl(Y) > 0,

0 if dkl(Y) = 0.
(3)

We have a linear majorizing function of −2(dij(Y) + dkl(Y) + δ)dkl(X). Unfortunately, we cannot apply the inequality
(3) for −2(dij(Y) + dkl(Y) − δ)dij(X) directly since it is not always true that dij(Y) + dkl(Y) − δ > 0. Thus, we
consider the case dij(Y) + dkl(Y)− δ ≥ 0 and the case dij(Y) + dkl(Y)− δ < 0 separately.

If dij(Y) + dkl(Y)− δ ≥ 0, we can apply the inequality (3) and obtain a linear majorizing function. Then,

max [0, dij(X) + δ − dkl(X)]
2

≤

2d2ij(X) + 2d2kl(X)− 2
dij(Y)+dkl(Y)−δ

dij(Y) (xi − xj)
T (yi − yj)

−2dij(Y)+dkl(Y)+δ
dkl(Y) (xk − xl)

T (yk − yl) + (dij(Y) + dkl(Y))
2
+ δ2 if dij(Y) > 0 and dkl(Y) > 0,

2d2ij(X) + 2d2kl(X)− 2
dij(Y)+dkl(Y)+δ

dkl(Y) (xk − xl)
T (yk − yl)

+ (dij(Y) + dkl(Y))
2
+ δ2 if dij(Y) = 0 and dkl(Y) > 0,

2d2ij(X) + 2d2kl(X)− 2
dij(Y)+dkl(Y)−δ

dij(Y) (xi − xj)
T (yi − yj)

+ (dij(Y) + dkl(Y))
2
+ δ2 if dij(Y) > 0 and dkl(Y) = 0,

2d2ij(X) + 2d2kl(X) + (dij(Y) + dkl(Y))
2
+ 2δ2 if dij = 0 and dkl(Y) = 0.

(4)

On the other hand, if dij(Y)+ dkl(Y)− δ < 0, we have −2(dij(Y)+ dkl(Y)− δ) > 0. Thus, we can apply the following
majorization inequality (Groenen et al., 2006)

dij(X) ≤ 1

2

d2ij(X)

dij(Y)
+

1

2
dij(Y). (5)

Supplementary Material for Local Ordinal Embedding

Note that this inequality holds when dij(Y) > 0. If dij(Y) = 0, we should replace it by a small positive value, say
τ . As Groenen et al. (2006) pointed out, by choosing τ small enough, this replacement should not have an effect on
the convergence properties of the majorization algorithm. Using the inequality (5), we can obtain a quadratic majorizing
function of −2(dij(Y) + dkl(Y)− δ)dij(X). Thus, if dij(Y) + dkl(Y)− δ < 0, we have

max [0, dij(X) + δ − dkl(X)]
2

≤

dij(Y)+δ−dkl(Y)

dij(Y) d2ij(X) + 2d2kl(X)− 2
dij(Y)+dkl(Y)+δ

dkl(Y) (xk − xl)
T (yk − yl)

+(dij(Y) + dkl(Y))dkl(Y) + (dij(Y) + δ)δ if dkl(Y) > 0,
dij(Y)+δ−dkl(Y)

dij(Y) d2ij(X) + 2d2kl(X) + (dij(Y) + dkl(Y))dkl(Y) + (dij(Y) + δ)δ if dkl(Y) = 0.

(6)

2.1.2. CASE II: dij(Y) + δ < dkl(Y)

In the case that dij(Y) + δ < dkl(Y), we have

max [0, dij(X) + δ − dkl(X)]
2 ≤ 2d2ij(X) + 2d2kl(X)− 4dij(Y)dij(X)− 4dkl(Y)dkl(X) + 2

(
d2ij(Y) + d2kl(Y)

)
.

Since dij(Y), dkl(Y) > 0, by the inequality (3) we have

max [0, dij(X) + δ − dkl(X)]
2

≤

{
2d2ij(X) + 2d2kl(X)− 4(xi − xj)

T (yi − yj)− 4(xk − xl)
T (yk − yl) + 2

(
d2ij(Y) + d2kl(Y)

)
if dij(Y) > 0,

2d2ij(X) + 2d2kl(X)− 4(xk − xl)
T (yk − yl) + 2

(
d2ij(Y) + d2kl(Y)

)
if dij(Y) = 0.

(7)

2.1.3. COMBINING THE MAJORIZATION RESULTS

Combining the above results, we obtain the majorizing function in Proposition 2:

oijklmax [0, dij(X) + δ − dkl(X)]
2 ≤αijkl‖xi − xj‖2 + α∗ijkl‖xk − xl‖ − 2βijkl(xi − xj)

T (yi − yj)

− 2β∗ijkl(xi − xk)
T (yi − yk) + γijkl, (8)

where α∗ijkl = 2oijkl,

αijkl =

{
2oijkl if dij(Y) ≥ |dkl(Y)− δ| or dkl(Y) > dij(Y) + δ,

oijkl
dij(Y)+δ−dkl(Y)

dij(Y) if dij(Y) + δ ≥ dkl(Y) and dij(Y) + dkl(Y) < δ,

βijkl =

oijkl

dij(y)+dkl(Y)−δ
dij(Y) if dij(Y) ≥ |dkl(Y)− δ| and dij(Y) > 0,

0 if (dij(Y) + δ ≥ dkl(Y) and dij(Y) + dkl(Y) < δ) or dij(Y) = 0,

2oijkl if dij(Y) + δ < dkl(Y),

β∗ijkl =

oijkl

dij(y)+dkl(Y)+δ
dkl(Y) if dij(Y) ≥ |dkl(Y)− δ| and dkl(Y) > 0,

0 if dij(Y) ≥ |dkl(Y)− δ| or dkl(Y) = 0,

2oijkl if dij(Y) + δ < dkl(Y),

and

γijkl =

oijkl[(dij(Y) + dkl(Y))2 + δ2] if dij(Y) ≥ |dkl(Y)− δ|,
oijkl[(dij(Y) + dkl(Y))dkl(Y) + (dij(Y) + δ)δ] if dij(Y) + δ ≥ dkl(Y) and dij(Y) + dkl(Y) < δ,

2oijkl
(
d2ij(Y) + d2kl(Y)

)
if dij(Y) + δ < dkl(Y).

Note that this function is quadratic in X .

Supplementary Material for Local Ordinal Embedding

2.2. Majorization algorithm for SOE

Here, we describe the majorization algorithm for the general ordinal embedding problem. By inequality (8), we have

Errsoft(X | p, δ)

≤
n∑
i<j

n∑
k<l

[
αijkl‖xi − xj‖2 + α∗ijkl‖xk − xl‖ − 2βijkl(xi − xj)

T (yi − yj)− 2β∗ijkl(xk − xl)
T (yk − yl) + γijkl

]
.

(9)

By reformulating the right side of (9), we obtain

Errsoft(X | p, δ) ≤
p∑
s=1

[
xTsM

∗xs − 2xTs H
∗ys
]
+ γ, (10)

where xs = (x1s, . . . , xns)
T , ys = (y1s, . . . , yns)

T , M∗ = (m∗ij)n×n, H∗ = (h∗ij)n×n, γ =
∑n
i=1

∑n
j 6=i
∑n
k 6=i γijk,

m∗ij =

{∑
j′ 6=im

∗
ij′ if i = j,

−(αij·· + α∗··ij) if i 6= j,
h∗ij =

{∑
j′ 6=i ηij′ if i = j,

−(βij·· + β∗··ij) if i 6= j.

Note that the diagonal elements ofM are positive. For given Y and xjs (j 6= i), we can optimize the majorization function
with xis by the following formula

xis :=

∑n
j=1 hijyjs −

∑
j 6=imijxjs

mii
.

Therefore, a majorization algorithm for minimizing Q is given by Algorithm 1. In this algorithm, the computational
complexity of each iteration is O(c) where c is the number of ordinal constraints (i.e., c := #(A)).

Algorithm 1 SOE-MM: Majorization algorithm for SOE
1: Set δ > 0 to a scale parameter and set X0 to some initial coordinate matrix.
2: Set iteration counter t := 0.
3: Set X−1 := X0.
4: Set ε > 0 to a small vale as the convergence criterion (e.g., ε = 10−5).
5: while t = 0 or Errsoft(Xt−1 | p, δ)− Errsoft(Xt | p, δ) ≥ ε do
6: t := t+ 1.
7: Set Y := Xt−1.
8: Compute M∗ and H∗.
9: for i = 1 to n do

10: for s = 1 to p do
11: Compute

xis :=

∑n
j=1 hijyjs −

∑
j 6=imijxjs

mii
.

12: end for
13: end for
14: Set Xt := X .
15: end while

3. Additional numerical experiments
3.1. A low sample size example in the realizable case

Section 6.2. of the main paper describes a realizable embedding problem. Because some of the algorithms could not
cope with the large sample size, we additionally conducted experiments with a smaller sample size. To this end, we

Supplementary Material for Local Ordinal Embedding

constructed the unweighted kNN graph from the two-dimensional original data in Figure 1 (upper left) and embedded
this graph in R2 by various embedding methods. We compare our approach to Laplacian eigenmaps (LE), the Kamada
and Kawai algorithm (KK), the Fruchterman Reingold algorithm (FR), generalized non-metric scaling (GNMDS) with
λ = 0.05, structure preserving embedding (SPE) and t-distributed stochastic neighbor embedding (t-SNE). In Figure 1 we
can observe the same effect that also happened for larger sample size in the main paper: while most of the methods get the
rough layout correct, LOE is the only method that is capable to capture the original density and geometric structure of the
data.

3.2. Choice of k

Next, we describe the relationship between the number of constraints and the number of nearest neighbors. We sampled
500 points in R2 from a distribution that has two uniform high-density squares, surrounded by a uniform low density region.
See Figure 2 (upper left). We then constructed the unweighted kNN graph and embedded this graph in R2 by LOE using
the Laplacian eigenmaps as the initial embedding, see Figure 2. Figure 1 in the main paper shows the difference between
the original embedding and the procrustes transformed LOE embedding with each k. In Figure 2, we show the actual LOE
embeddings for a variety of values of k. The number of constraints can be considered as the amount of information that is
given about the original density structure. The LOE embeddings around the most informative value k = 250 recover the
original embedding nearly perfectly.

3.3. Some standard graph-drawing examples

Here, we describe applications for 6 classical unweighted graphs: the Frucht graph, the Icosahedral graph, the Chvatal
graph, the Folkman graph, the Thomassen graph and the Meredith graph. The adjacency matrices of these graphs are
available in the igraph package on R (Csárdi & Nepusz, 2006). To these graphs, we applied various embedding methods:
LOE, Laplacian eigenmaps (LE), Kamada and Kawai algorithm (KK), Fruchterman Reingold algorithm (FR), general-
ized non-metric multidimensional scaling (GNMDS), structure preserving embedding (SPE), and t-distributed stochastic
neighbor embedding (t-SNE). Here, to choose the tuning parameter λ for GNMDS, we also tried the candidate values
{0.5, 1, 2, . . . , 100} and chose the one that leads to the best GARI value. Figure 3 shows the adjacency matrices (0 : blue
and 1 : yellow) of the 6 graphs and embeddings of each method with the values of GARI and Errlocal. We can see that
LOE performs very nicely for most of these graph drawing tasks. Moreover, for the Desargues graph whose 2-dimensional
embeddings are described in the main paper, Figure 3 shows 3-dimensional embeddings of each method with the values of
GARI and Errlocal.

3.4. A non-local embedding task solved by the general SOE algorithm

In this experiment, we consider a general, non-local embedding problem and apply our SOE algorithm. As initial data we
use a matrix of “driving” distances between 21 cities in Europe. This data is available as ‘eurodist’ in the stats library of
R. Note that there are no perfect embeddings in the 2-dimensional space. Among all ordinal distance comparisons (about
20000 comparisons in total), we randomly selected 1000 ordinal comparisons. We now compare our SOE algorithm to
GNMDS. The parameter for GNMDS was set to λ = 0.15, which was selected as the value that provides the minimal
number of violations of ordinal constraints. We compare SOE and GNMDS to two hard competitors: metric MDS, which
is allowed to uses the actual distance scores between all cities, and standard non-metric MDS, which is allowed to use all
ordinal constraints. Figure 4 shows the procrustes rotated embeddings of each of the methods. SOE provides a very similar
embedding to the one of non-metric MDS with full ordinal embedding. The solution of GNMDS is somewhat different.
The figure shows that SOE provides a much better embedding than GNMDS. This is also in accordance with the number
of violations of constraints, which is 94/1000 for GNMDS and 35/1000 for SOE.

3.5. Illustration of the proof of Theorem 3

The main step in the consistency proof is Proposition 4: the density estimate of von Luxburg & Alamgir (2013) can be used
to re-weight the graph, and the shortest path distances in this re-weighted graph converge to the true underlying Euclidean
distances.

We demonstrate this convergence for a simple toy data set: a mixture of two Gaussians in R2, where the weight of one
Gaussian is slightly larger than the weight of the other Gaussian (see Figure 5, left side). We draw n = 1000 points
according to this distribution, build the unweighted kNN graph with k = 50, and estimate the density as described in

Supplementary Material for Local Ordinal Embedding

von Luxburg & Alamgir (2013). Then we re-weight the edges in the kNN graph with the weights rn,k as described in the
proof of Proposition 4 of the main paper. In this re-weighted kNN graph we then compute the shortest path distances. In
Figure 5 we depict these shortest path distances (right plot) and the true underlying Euclidean distances (middle plot). It is
obvious that the distance structure is exactly the same.

Note that once we have an approximation of the full underlying Euclidean distance matrix, as provided in Proposition 4,
we could simply use classic multidimensional scaling to embed the original graph to the Euclidean space. This embedding
is going to be consistent, by a similar argument as the one of Theorem 3. On the same toy data as above, we show the result
of this embedding in Figure 6. It is obvious that it gets the structure correct, which illustrates the relevance of Theorem 3.
However, we do not recommend this approach for practice, because estimating the density to construct an embedding
violates the principle that one never should solve too difficult problems as an intermediate step.

References
Csárdi, G. and Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems:

1695, 2006. URL http://igraph.sf.net.

Groenen, P. J. F., Winsberg, S., Rodı́guez, O., and Diday, E. I-scal: Multidimensional scaling of interval dissimilarities.
Computational Statistics & Data Analysis, 51(1):360–378, 2006.

von Luxburg, U. and Alamgir, M. Density estimation from unweighted k-nearest neighbor graphs: a roadmap. In Neural
Information Processing Systems (NIPS), pp. 225–233, 2013.

http://igraph.sf.net

Supplementary Material for Local Ordinal Embedding

Original data Kamada and Kawai

t-SNE

Laplacian eigenmaps Fruchterman and Reingold

LOESPEGNMDS

10
8

57
10

8
9

25
9

2557

Figure 1: Two dimensional embeddings of 7 methods in the realizable and small sample case.

Original data k = 10 k = 50 k = 100 k = 200

k = 250 k = 300 k = 400 k = 450 k = 490

Figure 2: LOE embeddings for different values of k.

Supplementary Material for Local Ordinal Embedding

GARI
1.54 1.44 1.42 3.38 1.40 1.82 1.32

LOEt-SNESPEGNMDSFRKKLEIcosahedral

0.51 0.57 0.57 0.69 0.57 0.57 0.63

GARI
0.47 0.36 0.50 2.79 0.50 0.62 0.00

LOEt-SNESPEGNMDSFRKKLEFrucht

0.66 0.73 0.77 0.69 0.84 1.000.73

GARI
6.27 6.04 5.96 11.9 6.18 7.30 5.34

LOEt-SNESPEGNMDSFRKKLEFolkman

0.29 0.37 0.37 0.37 0.52 0.370.43

GARI
6.18 4.52 4.32 30.2 5.79 7.80 3.04

LOEt-SNESPEGNMDSFRKKLEThomassen

0.29 0.42 0.38 0.30 0.30 0.68 0.53

GARI
29.0 21.7 21.5 24.2 27.8 154.6 12.6

LOEt-SNESPEGNMDSFRKKLEMeredith

0.55 0.45 0.45 0.59 0.40 0.48 0.58

GARI
2.25 2.69 2.65 3.30 2.45 2.42 2.03

LOEt-SNESPEGNMDSFRKKLEChvatal

0.38 0.12 0.12 0.28 0.41 0.350.48

GARI
4.14 4.26 4.21 9.50 4.30 5.17 0.00

LOE-3Dt -SNE-3DSPE-3DGNMDS-3DFR-3DKK-3DLE-3DDesargues

0.68 0.84 0.88 0.80 0.76 1.000.68

Figure 3: Adjacency matrices (0 : blue and 1 : yellow) and embeddings of 7 methods for some classical graphs.

Supplementary Material for Local Ordinal Embedding

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Athens

Barcelona

Brussels

Calais
Cherbourg

Cologne

Copenhagen

Geneva

Gibraltar

Hamburg
H. Holland

Lisbon

Lyons

Madrid

Marseilles Milan

Munich
Paris

Rome

Stockholm

Vienna

: Non-metric MDS with all ordinal information
: Metric MDS

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Athens

Barcelona

Brussels

Calais
Cherbourg

Cologne

Copenhagen

Geneva

Gibraltar

Hamburg

H. Holland

Lisbon

Lyons

Madrid

Marseilles Milan

Munich
Paris

Rome

Stockholm

Vienna

: SOE with partial ordinal information
: Non-metric MDS with all ordinal information

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Athens

Barcelona

Brussels

Calais
Cherbourg

Cologne

Copenhagen

Geneva

Gibraltar

Hamburg
H. Holland

Lisbon

Lyons

Madrid

Marseilles Milan

Munich

Paris

Rome

Stockholm

Vienna

Cherbourg

Paris Cologne
Brussels

Hamburg
Copenhagen

: GNMDS with partial ordinal information

: Non-metric MDS with all ordinal information

Figure 4: Two-dimensional embeddings of 21 cities in Europe (Upper figure: metric MDS with the original distance matrix
and non-metric MDS with all ordinal comparisons, Lower left figure: non-metric MDS with all ordinal comparisons and
SOE with 1000 ordinal comparisons, Lower right figure: non-metric MDS with all ordinal comparisons and GNMDS with
1000 ordinal comparisons).

Supplementary Material for Local Ordinal Embedding

! " # $ # " !"

$

"

$%$&

$%#

$%#&

'()*+,-

−2 0 2

−1

0

1

Euclidean distances

−2 0 2

−1

0

1

Shortest path dist. (re-weighted)

Figure 5: Left side: Density of the mixture of Gaussians used in the simulation. Middle and right: we fix one data point X ,
marked by a black star. The color of the remaining points encodes the distance of the corresponding point to X . We can
see that the true Euclidean distance (middle plot) is very well approximated by the shortest path distance in the re-weighted
graph (right plot).

−2 0 2
−2

0

2

Original data
(n = 1000, k = 50)

−10 0 10

−10

0

10

Ordinal embedding
(based on estimated density)

−20 0 20
−20

0

20

40

Ordinal embedding
(based on true density)

Figure 6: Left side: original sample from the mixture of Gaussians. The color encodes the true density values. Middle:
reconstructed point set. We first estimated the density based on the unweighted kNN graph, then re-weighted the graph
edges as in the Proof of Proposition 4, computed the shortest path distances in this reweighted graph, and then applied
classic (metric) multidimensional scaling. The colors show the values of the estimated density. Right: same procedure
as in the middle, but the graph was reweighted based on the true distance values. We can see that this results in a nearly
perfect embedding.

