Spectral Bandits

Supplementary Material

Confidence ellipsoid

Lemma 3. Let V, = X;_1X]_ | + A and ||a*||a < C.
For any x and t > 1, with probability at least 1 — §:

X (& — )| < ||x[lv-1 | Ry/21og V|2 +C
t = v, HINEE

Proof of Lemma 3. We have:
—af)| = X'(=Vi T Aa® + Vg
< XV AT+ XV
< (x', Aa*>v;1 + (x, ’St>V;1
< Ixlly+ (€l + 1Ay, 1),

where we used Cauchy-Schwarz inequality in the last step.
Now we bound ||£,|y,—1 by Lemma 1 and notice that:

Ix" (6

JAafly-1 = /(@) AV; ' Aa

< V(@) Aa* = 'l < C

Effective dimension

Lemma 11. For any real positive-definite matrix A with
only simple eigenvalue multiplicities and any vector X such
that |x||2 < 1 we have that the determinant |A + xx"| is
maximized by a vector x which is aligned with an eigen-
vector of A.

Proof of Lemma 11. Using Sylvester’s determinant theo-
rem, we have:

A +xx"| = |A|T+ A7 'xx"| = |A|(1 + x"A " 'x)

From the spectral theorem, there exists an orthonormal ma-
trix U, the columns of which are the eigenvectors of A;
such that A = UDUT with D being a diagonal matrix
with the positive eigenvalues of A on the diagonal. Thus:
max x'A"'x = max x'UD 'U"x
lIx[l2<1 [Ix[[2<1
Ty—1

= max y'D ,
|\Y||2S1y Y

since U is a bijection from {x, ||x||2 < 1} to itself.

Since there are no multiplicities, it is easy to see that the
quadratic mapping y — y'D ™'y is maximized (under the
constraint [|y||2 < 1) by a canonical vector e; correspond-
ing to the lowest diagonal entry I of D. Thus the maximum
of x — x"A~!x is reached for Ue;, which is the eigen-
vector of A corresponding to its lowest eigenvalue. O

Lemma 4. Let A = diag(\1,...,\n) be any diagonal
matrix with strictly positive entries. Then for any vectors
(x¢)1<t<m, such that ||x¢ll2 < 1 foralll <t < T, we
have that the determinant |Vr| of Vo = A + Zle XX}
is maximized when all x; are aligned with the axes.

Proof of Lemma 4. Letus write d(x1,...,X1) =
determinant of V. We want to characterize:

|VT| the

max d(x1,...,X7)
X15eXn | %e [|2<1,V1I<E<T

Forany 1 <t < T, let us define:

T
V_i=A+ Z XX,

s=1
sF#t

We have that Vo = V_; + x:x;. Consider the case
with only simple eigenvalue multiplicities. In this case,
Lemma 11 implies that x; — d(X1,...,X¢t,...,X7) is
maximized when x; is aligned with an eigenvector of V_;.
Thus all x;, for 1 < ¢ < T, are aligned with an eigenvector
of V_; and therefore also with an eigenvector of V. Con-
sequently, the eigenvectors of Zthl x;x; are also aligned
with V7. Since A =V — Zthl x;:x; and A is diagonal,
we conclude that V7 is diagonal and all x; are aligned with
the canonical axes.

Now in the case of eigenvalue multiplicities, the maxi-
mum of V| may be reached by several sets of vectors
{(x")1<t<7 }m but for some m*, the set (X" )1 <;<7 Will
be aligned with the axes. In order to see that, consider a
perturbed matrix V<, by a random perturbation of ampli-
tude at most ¢, i.e. such that V2, — V_; when e — 0.
Since the perturbation is random, then the probability that
A®, as well as all other V€, possess an eigenvalue of mul-
tiplicity bigger than 1 is zero. Since the mapping € — V<,
is continuous, we deduce that any adherent point X; of the
sequence (x£). (there exists at least one since the sequence
is bounded in ¢3-norm) is aligned with the limit V_; and
we can apply the previous reasoning. O

Lemma 5. Forany T, let Vp = Zthl x:x; + A. Then:

log||A| <maleog(1+)\ )

where the maximum is taken over a Npossible positive real
numbers {t1,...,tnx}, suchthaty ;" t; =1T.
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Proof of Lemma 5. We want to bound the determinant
| V1| under the coordinate constraints ||x;||s < 1. Let:

T
) = ’A + thx{
t=1

M(x1,...,xp

From Lemma 4 we deduce that the maximum of A is
reached when all x; are aligned with the axes:

T
‘A + Z XX}
t=1

‘dlag i + i)

M =

max
X1,....X7;xtE{€1,....en }

= max
t1,...,ty POSitive integers, Z

N
S max H ()\1 + ti),
i=1

t1,..,tx pOSitive reals,ZZ1 ti=T

from which we obtain the result. 0

Lemma 6. Let d be the effective dimension. Then:

V7| LT
1 < 2dlog —
%8 TA X

Proof of Lemma 6. Using Lemma 5 and Definition 1:

lg||‘;;T|| < Zlog(1+ ) Zlog(l-i— )
< dlog(1+ g) +; AE’H
< dlog (1+ %) + )\;Zji-l
< 2dlog (1 + %)
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Lemma 7. For any fixed x € RY and any 6 > 0, we have

that if B(a*,8) = 2R+/1410g(2/0) + ||a*|| A, then at time
t; (begznmng ofphase 7):

P(Ix"(ay — )] < [xlly1Bla’6)) = 1-3

Proof of Lemma 7. Defining §; = Sl
have:

{141 XsEss WE

x"(&; —a”)| = [x" (- V;'Aa" + Vg
<[XTVIAQK |+ XV @)
The first term in the right hand side of (4) is bounded as:
X'VilAa| < [xTVIIAY2 A e
||a*||A,/XTV;1AV;1x
loc™{lay/xTV % = [l allx]ly -

IA

Now consider the second term in the r.h.s. of (4). We have:

2]

Z (XTVJ-_lxs)é‘s

s=t;_1+1

X"V =

Let us notice that the points (xs) selected by the algo-
rithm during phase 5 — 1 only depend on their width
[[x[ly/-1 which does not depend on the rewards received
during the phase j — 1. Thus, given F;_,, the sequence
(xs)tjfﬁlgsqj is deterministic. Consequently, one may
use a variant of Azuma’s inequality (Shamir, 2011):

P<|XTVj1£j|2 < 28R?210g(2/6) x
tj

X xTV;1 ( Z

S:t]‘71+1

XSXl)VjIX‘]:j2> > 1-— (5,
from which we deduce:

P(|xTV;1sj\2 < 56R2XTV;1xlog(2/5)‘fj,2) >1-4,
since Zij:tj,lﬂ XX, < V. Thus:

P(|XTV;15j\ < 2R|jx|ly 1410g(2/5)) >1-4

Lemma 8. Forall x € A;, we have: O
1 o
[y < —— s 15,
VJ' tj — tjfl s—tjz:1+1 i stl

Proof of Lemma 8. We have:

i

max E
XEA;

7 s=tj_ 1+1

Z max ||x||V_11

s=t;_ 1+1
tj

> max (x5

IN

IN

since the algorithm selects (during phase 5 — 1) the arms

with largest width. O
Lemma 9. For each phase j, we have:

tj

| \Z1]
Z min (LHXSH%S‘L) < log Al

s=tj_1+1

Proof of Lemma 9. This lemma is proved by instantiating
Lemma 2 for each phase. O



