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Abstract
Unsupervised feature learning is the task of using
unlabeled examples for building a representation
of objects as vectors. This task has been exten-
sively studied in recent years, mainly in the con-
text of unsupervised pre-training of neural net-
works. Recently, Coates et al. (2011) conducted
extensive experiments, comparing the accuracy
of a linear classifier that has been trained us-
ing features learnt by several unsupervised fea-
ture learning methods. Surprisingly, the best per-
forming method was the simplest feature learn-
ing approach that was based on applying the K-
means clustering algorithm after a whitening of
the data. The goal of this work is to shed light
on the success of K-means with whitening for
the task of unsupervised feature learning. Our
main result is a close connection between K-
means and ICA (Independent Component Anal-
ysis). Specifically, we show that K-means and
similar clustering algorithms can be used to re-
cover the ICA mixing matrix or its inverse, the
ICA filters. It is well known that the independent
components found by ICA form useful features
for classification (Le et al., 2012; 2011; 2010),
hence the connection between K-mean and ICA
explains the empirical success of K-means as a
feature learner. Moreover, our analysis under-
scores the significance of the whitening opera-
tion, as was also observed in the experiments re-
ported in Coates et al. (2011). Finally, our analy-
sis leads to a better initialization of K-means for
the task of feature learning.

1. Introduction
Many deep learning algorithms attempt to learn multiple
layers of representations in an unsupervised manner. These
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representations are commonly used as features for classifi-
cation tasks. Particularly, it was demonstrated that sparse
features, i.e. features which are rarely activated, perform
well in object recognition tasks.

Several algorithms have been proposed for learning sparse
features. Some examples are: sparse auto-encoders, sparse
coding, Restricted Boltzmann Machines and Independent
Component Analysis (ICA). In particular, several variants
of ICA have been shown to achieve highly competitive or
state-of-the-art results for object classification (Le et al.,
2011; 2010).

In computer vision applications, learning features is often
interpreted as learning dictionaries of “visual words”, that
are later being used for construction of higher level im-
age features. While some works learn visual words by one
of the aforementioned feature learning methods, the most
widely used approach in the computer vision literature is to
employ the vanilla K-means clustering as a method for ob-
taining such dictionaries (Wang et al., 2010; Csurka et al.,
2004; Lazebnik et al., 2006; Winn et al., 2005; Fei-Fei &
Perona., 2005).

Recently, Coates et al. (2011) considered various feature
learning algorithms as part of a single-layer unsupervised
feature learning framework. They applied K-means, sparse
auto-encoders, and restricted Boltzmann machines. Sur-
prisingly, the simple K-means prevailed over the more
complicated algorithms, achieving state-of-the-art results.
Two particular observations are of interest. One is that
whitening plays a crucial role in classification performance
when using K-means. Another is that when whitening is
applied to the input, K-means learns centroids that resem-
ble the oriented edge patterns which are typically recovered
by ICA (Bell & Sejnowski, 1997).

Coates & Ng (2012) have observed empirically that K-
means tends to discover sparse projections and have raised
the question of whether this is accidental or there is a
deeper relation to sparse decomposition methods such as
ICA. In this work, we draw a connection between ICA
and K-means, showing that when K-means is applied af-
ter whitening then, under certain conditions, it is able to
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recover both the filters and the mixing matrix of the more
expressive ICA model. This is despite the fact that the
original goal of K-means is to attach a single centroid to
each example. In addition, our analysis suggests a family
of clustering algorithms with the same ability, and a sim-
ple way to empirically test whether an algorithm belongs
to this family. Finally, our analysis reveals the importance
of whitening, and leads to a new way to apply K-means for
feature learning.

Based on these insights, we give an interpretation of the
features learned by the framework in Coates et al. (2011).
In general, the discovered properties of K-means suggest
that, when applying K-means to computer vision tasks such
as classification or denoising, it may be beneficial to incor-
porate whitening, as was done in the experiments presented
in Coates et al. (2011).

2. Background and Basic Definitions
In this paper we draw a connection between ICA and K-
means. We first define these two learning methods.

2.1. K-means

The K-means objective is defined as follows. We are
given a sample S =

{
x(i)
}m
i=1
⊆ Rd, and a number of

clusters k ∈ N, and our goal is to find centroids c =
{c(1), . . . , c(k)} ⊆ Rd, which are a global minimum of the
objective function:

ĴS(c) =
1

m

m∑
i=1

min
j∈[k]

∥∥∥x(i) − c(j)∥∥∥2
2
. (1)

LetAk denote the algorithm which given S and k outputs a
(global) minimizer of Equation (1). While it is intractable
to implement Ak in the general case, and one usually em-
ploys some heuristic search (such as Lloyd’s algorithm),
here we will focus on the ideal K-means algorithm which
finds a global minimum of Equation (1).

In addition, we will refer to the density based version of
K-means defined as a minimizer of

Jx(c) = E
x
min
j∈[k]

∥∥∥x− c(j)∥∥∥2
2
, (2)

where x is some random vector with a distribution over Rd.
We denote by µ = {µ(1), . . . , µ(k)} ⊆ Rd a minimizer of
Jx(c).

2.2. Independent Component Analysis (ICA)

The linear noiseless ICA model is a generative model (Hy-
varinen & Oja, 2000), defining a distribution over a ran-
dom vector x = (x1, . . . , xd)

>. To generate an instance

of x we should first generate a hidden random vector s =
(s1, . . . , sd)

>, where each sk is a statistically independent
component, distributed according to some prior distribution
over R. Then, we set

x = As (3)

where A ∈ Rd,d is some deterministic matrix, often called
the mixing matrix. We assume that A is invertible. A
specific ICA model is parameterized by the mixing ma-
trix A and by the prior distribution over sk. Through-
out this paper we mostly focus on the prior distribution
being a Laplace distribution, that is, the density function
is p(sk) ∝ exp(−

√
2|sk|). We denote by slap the ran-

dom vector over Rd whose components are i.i.d zero-mean
unit-variance Laplace random variables. That is, p(s) ∝
exp(−

√
2‖s‖1), with ‖s‖1 being the `1 norm.

Given a sample x(1), ..., x(N) of N i.i.d. instantiations of
the random vector x, the task of ICA is to estimate both
the mixing matrix A and the sources (i.e., the hidden vec-
tors) s(1), ..., s(N). Since the mixing matrix is invertible,
once we know A we can easily compute the sources by
s = A−1x. From now on, we will refer to this model and
task simply as ICA. We denote W = A−1. The rows of W
are commonly referred to as filters.

Since we can always scale the columns of A, we can as-
sume w.l.o.g. that sk have unit variance E[s2k] = 1. In
addition, we can assume, w.l.o.g., that sk has zero mean,
E[sk] = 0, since otherwise, we can subtract the mean of x
by a simple preprocessing operation. Such preprocessing
is often called centering.

Another preprocessing, which is often performed before
ICA, is called whitening. This preprocessing linearly trans-
forms the random variable x into y = Tx such that y has
identity covariance, namely, E{yy>} = I . Concretely, if
UDU> = E{xx>} is the spectral decomposition of the
covariance matrix of x, then one way to obtain whitened
data is by y = D−1/2U>x. Another way, called ZCA
whitening (Bell & Sejnowski, 1997), is y = UD−1/2U>x.

The utility of whitening resides in the fact that the new mix-
ing matrix is orthogonal, which reduces the number of pa-
rameters to be estimated. Instead of having to estimate n2

parameters for the original matrix A, we only need to esti-
mate the new orthogonal matrix that contains n(n − 1)/2
degrees of freedom. A review of approaches for estimating
the ICA model can be found in (Hyvarinen & Oja, 2000).

2.3. Additional Notation

Let ‖.‖p denote the p-norm, and let the set of numbers
{1, . . . , .k} be denoted by [k]. ei will represent the i-th unit
vector in Rd. Given c = {c1, . . . , ck} ⊆ Rd andH ∈ Rd,d,
for purposes of brevity we defineH∗c , {Hc1, . . . ,Hck}.
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If x(1), x(2), . . . is an infinite sequence of i.i.d copies of a
random vector x, Sm =

{
x(i)
}m
i=1

is a sequence of ran-
dom sets sharing a common sample space. We will simply
say Sm =

{
x(i)
}m
i=1

is an i.i.d sample of random vari-
able x to refer to this sequence. We will extend the notion
of almost sure convergence to sets of random vectors. A
sequence of sets of random vectors Cn = {cn1 , . . . , cnk}
is said to converge almost surely to a set of fixed vectors
B = {b1, . . . , bk} if there exists a labeling cnn1, . . . , c

n
nk of

the points in Cn such that cni → bi almost surely. We will
denote this relation by Cn → B a.s.

3. K-means and ICA relationship
Before stating the main results, we first rewrite both the
K-means and ICA objectives in terms of a matrix A and
sources s(1), . . . , s(m), and discuss the differences in the
objectives.

In ICA we wish to estimate the unknown mixing matrix
A, or equivalently its inverse W . Given m i.i.d sam-
ples

{
x(i)
}m
i=1
⊆ Rd of ICA random vector x (see Equa-

tion (3)), a popular approach for estimating W is maxi-
mum likelihood estimation (Hyvarinen et al., 2001). The
log-likelihood maximization takes the form:

argmax
W

m∑
i=1

d∑
j=1

log(p(w>j x
(i))) +m log |detW |

where p is the prior density of the independent compo-
nents sj . In the context of natural images, sparsity is dom-
inant (Hyvarinen et al., 2009), therefore p is often cho-
sen to be the Laplace prior, which yields the L1 penalty,
− log(p(sj)) = |sj |. Another popular prior distribution is
the Cauchy prior which yields the penalty − log(p(sj)) =
log(1 + s2j ).

Equivalently, we can write the ICA problem as

argmax
A,s(1),...,s(m)

m∑
i=1

d∑
j=1

log(p(s
(i)
j ))−m log |detA|

s.t. ∀i, x(i) = As(i)

For comparison, consider a simple reformulation of the K-
means objective. Given S =

{
x(i)
}m
i=1
⊆ Rd, k ∈ N, we

can rewrite the objective given in (1) as

argmin
A,s(1),...,s(m)

1

m

m∑
i=1

∥∥∥x(i) −As(i)∥∥∥2
2

s.t. ∀i, s(i) ∈ {e1, . . . , ek}

Thus, both K-means and ICA can be viewed as a dictio-
nary learning problem, seeking a matrix A and sources

s(1), . . . , s(m), that best explain the input set. K-means at-
tempts to choose A so as to explain every sample with a
single column from it. ICA attempts to find a perfect ex-
planation of the input set, but allows each sample to depend
on a combination of the columns of A. Therefore, in gen-
eral, these objectives seem to be quite different, and there
is no guarantee that the two optimization problems will re-
cover the same A.

Nevertheless, in the next sections we will see that if the
independent components come from a sparse distribution
(e.g. Laplace or Cauchy), K-means and ICA recovers the
very same mixing matrix A.

4. Main results
In this section we state our main results, showing con-
ditions under which both K-means and ICA recovers the
same mixing matrix A. Throughout this section, we con-
sider the ICA task restricted to the case in which the
prior distribution over the independent components is the
Laplace distribution, possibly the most common prior in
the context of sparsity. Extending the results to other sparse
distributions remains to future work. In the experiments
section we mention a variety of distributions that behave
similarly to Laplace in practice.

We begin with a result regarding general clustering algo-
rithms, beyond K-means. We define a family of clustering
algorithms that satisfy two particular properties: Rotation
Invariant and Sparse Sensitivity (RISS). We call this family
the family of “RISS” clustering algorithms. We prove that
any “RISS” clustering algorithm can be used to solve the
ICA task. We then claim that the ideal K-means algorithm
is “RISS”. This work makes the first steps towards a com-
plete proof. For ICA in two dimensions we prove that a
close variant of K-means is indeed “RISS”, and we provide
experiments that support the claim for larger dimensions.

Furthermore, our analysis relies on the following two ideal
assumptions: we can obtain the exact whitening matrix T
for the ICA random variable x (Equation (3)), and we have
access to the ideal algorithm for K-means or its variants.
In practice, T can be estimated using a procedure similar
to PCA and the K-means objective can be minimized to a
local minimum using the standard Lloyd’s algorithm. In
the experiments section we show that even in the non-ideal
setting our results tend to hold. We also discuss implemen-
tation details of our algorithm and derive from our theory
an initialization technique for K-means that gives better re-
sults in practice.

4.1. “RISS” clustering algorithms

A clustering algorithm for the purpose of our discussion is
any algorithm that receives a set S =

{
x(i)
}m
i=1
⊆ Rd as
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Figure 1. Illustration of property 2 of a “RISS” algorithm. (Blue)
i.i.d samples of slap in two dimensions (White) output of standard
K-means with k=4 converges to points that lie on the axes and
hence to the unit vectors when normalized

input and outputs a set whose size is twice the dimension,
C =

{
c(i)
}2d
i=1
⊆ Rd. We will use the term “RISS” clus-

tering algorithm, for a clustering algorithm that satisfies the
following two properties: First, a rotation of the input set
should cause the same rotation of the output centroids. This
is a reasonable assumption for any distance based cluster-
ing algorithm (such as K-means), since a rotation of all the
examples does not change the distances between examples.
The second property we require deals with the centroids the
clustering algorithm finds when its input is a large enough
sample of slap. We require that the output would be a set
of centroids that lie near the axes, which is where the bulk
of the Laplace distribution is. See an illustration in Fig-
ure 1. For the purpose of our paper, we are only interested
in the direction of the centroids and are not interested in
their magnitude. Therefore, we will always assume that the
output of the clustering algorithm is normalized to have a
unit Euclidean norm. Formally:

Definition 1. A clustering algorithm B is “RISS” if it sat-
isfies two properties.

1. For every input S =
{
x(i)
}m
i=1
⊆ Rd and every or-

thonormal matrix U∈ Rd,d, B(U ∗ S) = U ∗B(S).

2. Let Sm =
{
s(i)
}m
i=1
⊆ Rd be an i.i.d sample of slap,

then bm = B(Sm) is a sequence of random sets such
that bm → {e1, ..., ed,−e1, ...,−ed} a.s.

We now present the Cluster-ICA algorithm that em-
ploys a “RISS” clustering algorithm and prove it solves the
ICA task, that is, it recovers the mixing matrix and filters
of ICA.

Algorithm 1 Cluster-ICA
1: Input: i.i.d sample of ICA random variable x (Equa-

tion (3)) S =
{
x(i)
}m
i=1
⊆ Rd

2: Obtain whitening matrix T for x
3: Apply whitening to input y(i) = Tx(i)

4: Set {c(1), . . . , c(2d)} = ClusterAlgorithm({y(i)}mi=1)
5: Output: {T>c(1), . . . , T>c(2d)}

Before proving correctness of the proposed algorithm, we
need the following lemma adapted from (Hyvarinen & Oja,
2000).

Lemma 1. Suppose x is an ICA random variable with in-
dependent components s, T is a whitening matrix for x and
let y = Tx, then y = Us where U is orthonormal.

Proof. Note that y = Tx = TAs. Denoting TA = U
we have I = E{yy>} = UE{ss>}U> = UU> where
the first equality follows from definition of T and the last
equality is true since we assume w.l.o.g E{s2k} = 1.

Theorem 1. Let Sm =
{
x(i)
}m
i=1

be an i.i.d sam-
ple of ICA random variable x with s = slap.
Then given a “RISS” clustering algorithm and Sm,
the output of Cluster-ICA converges a.s. to
{w1, . . . , wd,−w1, . . . ,−wd}, where w>i are the rows of
W = A−1.

Proof. From lemma 1, after whitening we have y(i) =
Us(i), for some orthonormal matrix U . Therefore y(i) is
an i.i.d sample of ICA random variable y = Us for some
orthonormal matrix U . Let B be the “RISS” clustering al-
gorithm used by Cluster-ICA. We show below that the
properties of B can be used to recover U .

First, from property 2,

B({s(i)}mi=1)→ {e1, ..., ed,−e1, ...,−ed} a.s.

In addition, from property 1,

B({y(i)}mi=1) = U ∗B({s(i)}mi=1) .

Therefore

B({y(i)}mi=1)→{U1, . . . , Ud,−U1, . . . ,−Ud} a.s.

That is, after step 4 we have a set {c(1), . . . , c(2d)} that
converges to the columns of U and their negatives. Fi-
nally since we have U , it is easy to recover A−1 since
U = TA, and therefore A−1 = U>T . It follows that
W> = (A−1)> = T>U and so

{T>c(1), . . . , T>c(2d)} → {w1, . . . , wd,−w1, . . . ,−wd} a.s.

Similarly, it can be shown that if we change the output of
Cluster-ICA to {T−1c(1), . . . , T−1c(2d)}, then it con-
verges to the columns of the mixing matrix A and their
negatives.

Two conclusions of practical interest arise from the above
analysis. Firstly, there are many ways to perform whitening
in step 2 of the algorithm. In computer vision tasks, a com-
mon method is ZCA whitening which tends to preserve the
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appearance of image patches as much as possible. Accord-
ing to Theorem 1, All methods are equally valid in our con-
text. Secondly, when we wish to empirically test whether
some clustering algorithm is “RISS”, if we can prove prop-
erty 1 in definition 1, then property 2 is easy to validate by
performing the same experiment as in section 6.1.

4.2. K-means is “RISS”

We conjecture that K-means with k = 2d is “RISS”1. In
section 6 we present experiments supporting this conjec-
ture. In this section we make small modifications to the
standard K-means objective (Equation (1)) that make the
analysis easier. Specifically, we introduce a set of con-
straints to the objective that are, as evidenced in the ex-
periments, already satisfied by K-means when applied to
ICA data. We then prove this variant is “RISS” in the two-
dimensional case and hope the proof sheds some light as to
why the same might also be true for standard K-means and
for any dimension.

First, we change the distance metric in Equation (1) from `2
norm to cosine distance, which is equivalent to constrain-
ing the centroids to the unit `2 sphere. Next, we leave d
centroids free while constraining the other d to be their neg-
atives. We then get

argmin
∀i, ‖c(i)‖2=1

∀i>d, c(i)=−c(i−d)

1

m

m∑
i=1

min
j∈[2d]

∥∥∥x(i) − c(j)∥∥∥2
2

Or equivalently, denoting

ĴcosS (c) =
1

m

m∑
i=1

max
j∈[2d]

〈x(i), c(j)〉

we have
argmax
∀i, ‖c(i)‖2=1

∀i>d, c(i)=−c(i−d)

ĴcosS (c) (4)

In the equality we used the facts that ‖c(i)‖2 = 1 and
min(f(x)) = −max(−f(x)). Let Acos2d denote an ideal
algorithm which given a sample S =

{
x(i)
}m
i=1
⊆ Rd, re-

turns a set of centroids c = {c(1), . . . , c(2d)} ⊆ Rd, which
solve Equation (4).

Theorem 2. Acos2d satisfies property 1 of a “RISS” cluster-
ing algorithm

Proof. The proof follows directly from the invariance
of the inner product to orthonormal projection, that is
〈x(i), c(j)〉 = 〈Ux(i), Uc(j)〉 for any orthonormal U .

The following theorem establishes the second property.

1Given that we normalize the resulting centroids to unit Eu-
clidean norm.

Theorem 3. For d = 2, Acos2d satisfies property 2 of a
“RISS” clustering algorithm.

5. Proof sketch of Theorem 3
We now describe the main lemmas we rely upon. Their
proofs are deferred to the appendix. Recall that in section
2 we defined the density based version of K-means. We
adapt Equation (2) to our variant as well and define

Jcosx (c) = E
x
max
j∈[2d]

〈x, c(j)〉

where x is some random variable with distribution
p(x) over Rd. In this section we denote by µ =
{µ(1), . . . , µ(2d)} ⊆ Rd an optimal solution to the density-
based counterpart of Equation (4)

argmax
∀i, ‖c(i)‖2=1

∀i>d, c(i)=−c(i−d)

Jcosx (c) . (5)

We first characterize µ:

Lemma 2. For d = 2 and x = slap, µ =
{e1, e2,−e1,−e2} is the unique maximizer of Equation (5)

An important step in the proof of the above lemma is sim-
plifying the objective Jcosslap

(c) by the following.

Lemma 3. Let ulap be a random variable with uniform
density over the `1 sphere, that is, all points satisfying
‖x‖1 = 1 have equal measure and the rest zero. Then,
for any feasible set C we have

argmax
c∈C

Jcosslap
(c) = argmax

c∈C
Jcosulap

(c).

Thus, Lemma 3 allows us to rewrite Equation (5) w.r.t ulap
instead of slap. The statement in Lemma 2 now becomes
more obvious and easy to illustrate:

Figure 2. µ = {e1, e2,−e1,−e2}. Blue arrows mark µ(i),
solid blue lines are the support of ulap, and dotted red lines
are the boundaries between the clusters V µi = {x ∈ R2 :
argmax
j∈[4]

〈x, µ(j)〉 = i}. Intuitively, on the `1 sphere, points near

the axes have maximal length. Therefore, to maximize the ex-
pected inner product it is most beneficial to choose µ(i) on the
axes as well.
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Before continuing we mention that Lemma 2 is the only
point in our analysis that is restricted to d = 2. The exten-
sion to higher dimensional spaces, d > 2, relies on proving
the following conjecture, which is derived by setting x =
ulap in Equation (5) and using the fact max{x,−x} = |x|.
Conjecture 1.

argmax
c(1),...,c(d)

‖c(i)‖2=1

E
ulap

{max
j∈[d]
|〈ulap, c(j)〉|} = {e1, . . . , ed}

Now that we have characterized the optimizer for the den-
sity based objective, let us prove convergence for a finite
sample.

Lemma 4. Let Sm =
{
s(i)
}m
i=1
⊆ Rd be an i.i.d. sample

of slap. If µ is a unique maximizer of Equation (5) where
x = slap, then Acos2d (Sm)→ µ a.s.

The proof of Theorem 3 now follows directly from Lemma
2 and Lemma 4.

6. Experiments
In this section we present experiments to support our re-
sults in the non-ideal setting. In appendix B we describe
the non-ideal versions of Ak and Acosk , that is, the standard
K-means algorithm and the algorithm for the variant pre-
sented in Equation (4) (referred to as the cosine-K-means).
The K-means algorithm, also known as Llyod’s algorithm,
can be viewed as attempting to solve Equation (1) by alter-
nating between optimizing for assignments of data points
while keeping centroids fixed, and vice versa. The cosine-
K-means algorithm is derived in the same manner for Equa-
tion (4).

6.1. K-means is “RISS”

We now perform an experiment showing that both K-means
and cosine-K-means tend to satisfy the definition of a
“RISS” clustering algorithm when the number of requested
clusters k is twice the dimension.

Property 1 of definition 1 can easily be verified for both
algorithms similarly to lemma 2. We therefore focus on
property 2.

The experiment is as follows. We sample a number of d-
dimensional vectors with each entry randomized i.i.d ac-
cording to some distribution D. Then we run K-means
and cosine-K-means with our sample and 2d randomly
initialized centroids as input, resulting in centroids c =
{c(1), . . . , c(2d)}. For the output of standard K-means we
normalize c(i) to have unit norm. Finally, we measure the
distance of c to the set e = {e1, ..., ed,−e1, ...,−ed} by
matching pairs of vectors from c and e, taking their differ-
ences εj and reporting the largest ‖εj‖∞. More precisely,

|S| = 104 |S| = 105 |S| = 5× 106

d=2 0.0306, 0.0131 0.0063, 0.0033 0.0023, 0.00058
d=10 0.0908, 0.0495 0.0190, 0.0148 0.0032, 0.0024
d=20 0.3849, 0.0749 0.0367, 0.0238 0.0044, 0.0033
d=50 0.6124, 0.3748 0.2466, 0.1722 0.0079, 0.0046

Table 1. dist(c, e) for different dimensions and sample sizes.
Left values - K-means, Right values - cosine-K-means

dist(c, e) = maxj ‖ej − cnj‖∞ where n1, . . . , n2d is the
matching permutation. Note that if dist(c, e) = 0, we have
c = e. Table 1 shows the resulting distances for various
sample sizes and dimensions with D set to Laplace dis-
tribution, meaning the input is a sample of slap. Indeed,
distances tend to zero as sample size increases, and so c
converges to e per coordinate.

Regarding the question of which distributions this work ap-
plies to, the same experiment has been repeated for various
distributions D. The distributions that exhibited similar re-
sults are: Hyperbolic Secant, Logistic, Cauchy, and Stu-
dent’s t. A common property of most of these is that they
are unimodal symmetric and have positive excess kurtosis.
A simple adaption of Theorem 1 will therefore tell us that
the corresponding Cluster-ICA algorithm can be used
to solve the ICA task w.r.t. all of the aforementioned distri-
butions.

6.2. Recovery of a predetermined mixing matrix

In this experiment we show that Cluster-ICA combined
with standard K-means solves the ICA task. To estimate
the whitening matrix, we use the regularized approach de-
scribed in (Ng., 2013). The experiment is as follows:

1. Construct 100, 10-by-10 images of rectangles at ran-
dom locations and sizes and set the columns of mixing
matrix A to be their vectorization. (Figure 3.a)

2. Take a sample S of size 5×105 from the ICA random
variable x = Aslap. (Figure 3.b)

3. Run Cluster-ICA with standard K-means and S as
input to obtain estimate for clumns of A and rows of
its inverse

Figure 3.c-d shows the recovered columns and filters. As
can be seen in Figure 3.c, we indeed recover the correct
matrix A. We also exhibited similar results when replacing
slap with any of the distributions discussed in the above
section and repeating the same experiment.
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(a) Constructed columns of A

(b) A subset of sample S

(c) Estimate for columns of A. The average abso-
lute pixel difference obtained by matching every es-
timated column to its origin in A is 0.031. The en-
tries in A are 0 or 1.

(d) Estimate for rows of A−1

Figure 3. Input and output of Cluster-ICA

6.3. The filters obtained for natural images

For natural scenes, ICA has been shown to recover oriented
edge-like filters with sparsly distributed outputs (Bell & Se-
jnowski, 1997). If natural image patches can be captured
by an ICA model with sparse independent components, the
Cluster-ICA algorithm should be able to recover simi-
lar filters.

We repeat the same experiment as in the previous section,
only this time instead of the sample S we take random
10-by-10 patches from the natural scenes provided by (Ol-
shausen, 1996).

Figure 4 shows that the filters learned by Cluster-ICA
are indeed oriented edges.

(a) Subset of input - natural image patches

(b) Estimated rows of A−1 given by Cluster-ICA

Figure 4. Cluster-ICA on natural image patches

6.4. K-means initialization technique and practical
remarks

When applying K-means, an important question is how
to initialize the centroids. A “RISS” clustering algo-
rithm should return centroids that lie on the axes and
Cluster-ICA is expected to return a rotated version of
that, meaning each centroid’s neighborhood is some quad-
rant of Rd. We therefore propose the following K-means
initialization technique for our context: randomize an or-
thonormal matrix with columns ui, and set the initial cen-
troids to {u1, . . . , ud,−u1, . . . ,−ud} with the hope that as
the K-means iterations progress, the centroids will rotate
themselves symmetrically into the optimal solution.

Figure 5 shows the same experiment as above, with and
without the proposed initialization technique. It can be seen
that with this technique applied, many of the noisy filters
are replaced with clear ones.

A few notes on applying the Cluster-ICA algorithm:

1. For numerical stability, it is recommended to apply a
regularized estimation of the whitening matrix, as de-
scribed in (Ng., 2013).

2. Throughout this work we have been setting k = 2d. It
may be beneficial to learn a larger number of centroids.
In practice, K-means may get stuck in a local minimum
or the ICA model with square mixing matrix A may not
represent reality (e.g. the real A could be overcomplete
- more columns than rows). In these cases learning more
centroids could recover more of the meaningful filters,
which translates into better performance as reported in
(Coates et al., 2011). A natural extension of the pro-
posed initialization technique for k > 2d is to scatter
centroids on the `2 sphere evenly, or uniformly at ran-
dom.
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(a) Random initialization

(b) Proposed initialization

Figure 5. Good initialization eliminates noisy filters

7. Interpreting the results of (Coates et al.,
2011)

It is interesting to attempt to understand why K-means is
the winning approach in (Coates et al., 2011). The train-
ing phase in the classification framework in (Coates et al.,
2011) essentially implements the Cluster-ICA algo-
rithm and returns centroids {c(i)}. For simplicity of the
argument, let us assume that the statistics of the data this
framework is applied to can be captured by the ICA model
with sparse independent components x = As. The feature
encoding is:

f(x)i = max{0, µ(z)− zi}

where zi = ‖x−c(i)‖2 and µ(z) is the mean of the elements
of z. From Theorem 1, if k = 2d then we have c(i) ≈ wi,
and so

zi ≈
√
‖c(i)‖22 + ‖x‖22 − 2w>i x

≈
√
constant− 2si

The approximate constant is due to normalization of input
x to unit norm, and since c(i) have, at least visually, roughly
the same norm. Thus, the features are the sources of a patch
with non-linearity on top. When the ICA model does not
represent reality (e.g. when A is over-complete) and k >
2d the features could be similar in spirit to sparse coding,
as the next section may suggest.

8. Discussion and Open Problems
We have presented the family of “RISS” clustering algo-
rithms whose properties enable us to solve the ICA task
with a simple algorithm incorporating the whitening oper-
ation. K-means and a variant of it, cosine-K-means, appear
to belong to this family. It is interesting to better under-
stand Conjecture 1 and to extend Theorem 3 to higher di-
mensional spaces, both for K-means and its variant. It is
also interesting to analyze convergence rates and compare
them to standard methods for solving ICA.

In our analysis “RISS” clustering algorithms have been de-
fined w.r.t the Laplace distribution but as the experiments
suggest, K-means behaves similarly for a larger class of
distributions. It is interesting to characterize this class. This
class of distributions can be regarded as a weaker prior,
compared to maximum-likelihood approaches for solving
ICA that assume a specific distribution of the independent
components.

Perhaps most intriguing is to understand the behavior in
over-complete cases. Learning k > 2d centroids over nat-
ural patches appears to recover more filters as well as im-
prove classification results, suggesting that K-means may
be able to recover an over-complete mixing matrix. Con-
sider, for example, the following over-complete mixture of
independent components that have more extreme sparsity
than Laplace. K-means appears to recover the columns of
the mixing matrix when k = 6:

To summarize the practical implications, whenever K-
means is being used for dictionary learning, under suitable
settings, it may be beneficial to unlock its ICA-like prop-
erties by combining the whitening operation, and to treat
the resulting centroids according to the interpretation pre-
sented. Together with its ability to learn an overcomplete
representation, K-means could become a powerful tool.
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A. Theorem 3 proofs
Let us begin with a useful definition and lemma. For any
centroid c(i) in c ⊆ Rd we denote the interior of its corre-
sponding cluster by V ci , defined as:

V ci = {x ∈ Rd : argmax
j∈[2d]

〈x, c(j)〉 = i}

We can neglect the issue of how points along cluster bound-
aries are assigned since the set of such points has zero mea-
sure w.r.t the density.

The next lemma presents a necessary condition for the op-
timality of µ.

Lemma 5. If p(x) is symmetric, that is, p(x) = p(−x)
for all x ∈ Rd, then µ must satisfy µ(i) = E{x|x ∈
V µi }/‖E{x|x ∈ V

µ
i }‖2

Proof. The proof is similar to the characterization of fixed
points for the vanilla K-means objective. The law of total
expectation and linearity of expectation allow us to write:

Jcos
x (µ) =

2d∑
i=1

p(x ∈ V µi )E{max
j∈[2d]

〈x, µ(j)〉|x ∈ V µi }

=

2d∑
i=1

p(x ∈ V µi )E{〈x, µ(i)〉|x ∈ V µi }

=

2d∑
i=1

p(x ∈ V µi )〈E{x|x ∈ V µi }, µ
(i)〉.

Suppose by contradiction and w.l.o.g that µ(1) 6= E{x|x ∈
V µ1 }/‖E{x|x ∈ V

µ
1 }‖2.

Let µ∗ be the solution identical to µ in all elements except
for the following:

µ(1)∗ = E{x|x ∈ V µ1 }/‖E{x|x ∈ V
µ
1 }‖2

µ(1+d)∗ = E{x|x ∈ V µ1+d}/‖E{x|x ∈ V
µ
1+d}‖2

Observe that the unique maximizers of the terms 〈E{x|x ∈
V µ1 }, c(1)〉 and 〈E{x|x ∈ V µ1+d}, c(1+d)〉 are µ(1)∗ and
µ(1+d)∗ respectively when c(i) are constrained to the unit
`2 sphere. Therefore, we have:

Jcos
x (µ) <

2d∑
i=1

p(x ∈ V µi )〈E{x|x ∈ V µi }, µ
(i)∗〉

=

2d∑
i=1

∫
x∈V µi

p(x)〈x, µ(i)∗〉dx

≤
∫
x∈Rd

p(x)max
j∈[2d]

〈x, µ(j)∗〉dx = Jcos
x (µ∗)

Thus, µ∗ has a strictly larger objective. To receive a con-
tradiction let us now show that it is also a feasible so-
lution. The symmetry constraint in Equation (5) implies

µ(1) = −µ(d+1), and it is easily verified that the neigh-
borhoods V µi are symmetric as well. In particular, V µ1 =
{−x : x ∈ V µ1+d}. Then, since p(x) is symmetric it fol-
lows that E{x|x ∈ V µ1 } = −E{x|x ∈ V µ1+d} and hence
µ(1)∗ = −µ(d+1)∗.

We now bring proofs for the lemmas presented in section
5.

Proof. [of Lemma 3] As implied by (Gupta & Song, 1997),
the random vector slap can be expressed as a product of
two independent random variables slap = zulap where z is
a scalar-valued random variable with the distribution of the
sum of d independent centered exponential variables, also
known as the Erlang distribution.

Now

Jcosslap
(c) = E

slap
{max
j∈[2d]

〈x, c(j)〉}

= E
z,ulap

{max
j∈[2d]

〈zulap, c(j)〉}

= E
z
{z} E

ulap

{max
j∈[2d]

〈ulap, c(j)〉}

= E
z
{z}Jcosulap

(c)

Since E
z
{z} does not depend on c, the result follows.

Proof. [of Lemma 2] Throughout this proof we will pro-
vide geometrical illustrations. Blue arrows will mark c(i),
dotted red lines are the boundaries between the clusters V ci ,
solid blue lines are the `1 unit sphere, and solid red lines are
points belonging to a particular Vi.

First, we invoke lemma 3, which allows us to replace the
term Jcosslap

(c) in Equation (5) with the more friendly objec-
tive Jcosulap

(c).

When dealing with two dimensions we have 4 centroids. It
is easy to see that for any c(1), . . . , c(4) such that c(3) =
−c(1), c(4) = −c(2) the sets V ci are the rotated quadrants of
R2:

Now consider any two adjacent sets V ci , V
c
j . One is the

90-degrees rotated version of the other. Suppose x =
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(x1, x2) ∈ V ci and x′ ∈ V cj is a 90 degrees rotation of x, i.e.
x′ = (−x2, x1). Note that ‖x‖1 = ‖x′‖1 , so p(x) = p(x′)
and it follows that the measure is rotated accordingly.

Now lemma 5 tells us that optimal c(i) are defined by the
measure within V ci and so c(1), . . . , c(4) are 90-degrees ro-
tated from each other. It follows that every V cj is a 45 de-
grees angular-span around c(j):

We are therefore left with the task of searching amongst
c(1), . . . , c(4) that are 90-degrees apart such that c(i) =
E{x|x ∈ V ci }/‖E{x|x ∈ V ci }‖2. An example of centroids
not satisfying our criterion (the red arrow is in the direction
of E{x|x ∈ V ci } which does not coincide with c(i)):

It is easily verified that the only centroids fitting our
search criterion are c = {e1, e2,−e1,−e2} and c′ =
{( 1√

2
, 1√

2
)>, (− 1√

2
, 1√

2
)>, ( 1√

2
,− 1√

2
)>, (− 1√

2
,− 1√

2
)>}:

Let us compute the objective value for c′. Since 〈x, c′(i)〉 =
1√
2

for every x with non-zero measure in V c
′

i we have

Jcosulap
(c′) =

∑4
i=1 p(x ∈ V c

′

i )E{〈x, c′(i)〉|x ∈ V c
′

i } =
1√
2

.

To compute the objective value for c we note that within
every V ci , 〈x, c(i)〉 is uniformly distributed on the line from
0.5 to 1. Therefore E{〈x, c(i)〉|x ∈ V ci } = 0.75 and
Jcosulap

(c) = 0.75.

We have therefore shown that Jcosulap
(c) > Jcosulap

(c′), which
concludes our proof.

Proof. [of Lemma 4] We use the consistency Theorem
from Pollard (Pollard, 1981). Recall the notation intro-
duced in section 2. Pollard’s proof consists of showing the
optimal centroids for ĴS(c) lie in a compact region almost
surely, establishing a uniform strong law of large numbers
for ĴS(c) and proving continuity of Jx(c). Almost sure
convergence of the minimum of ĴS(c) to the minimum of
Jx(c) follows directly.

By adding a constraint on the centroids of standard K-
means: ∀i : ‖c(i)‖2 = 1,∀i > d : c(i) = −c(i−d), the same
proof is applicable to our variant of K-means. A condition
for applying the theorem is

∫
x
‖x‖2p(x)dx < ∞ which is

indeed the case when x = slap since the Laplace distribu-
tion has finite moments. There is another condition regard-
ing uniqueness of the minimizer of Jx(c) for any number
of centroids up to 2d which is used for the compact re-
gion proof. Since our added constraints already imply c(i)

belong to a compact set, we can skip this condition and
require a unique minimizer only for 2d centroids.
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B. Lloyd’s K-means algorithm and
cosine-K-means algorithm

Algorithm 2 Llyod’s K-means algorithm

Input: S = {x(1), ..., x(m)} ; an initial set of k cen-
troids c(1)1 , . . . , c(1)k
repeat

Uniquely assign data points to closest centroids:
S
(t)
i =

{
x ∈ S : ∀j,

∥∥x− c(t)i ∥∥ ≤ ∥∥x− c(t)j ∥∥ }
Re-adjust centroids to cluster means:
c
(t+1)
i = 1

|S(t)
i |

∑
x∈S(t)

i
x

until converged

Algorithm 3 cosine-K-means algorithm

Input: S = {x(1), ..., x(m)} ; an initial set of k cen-
troids c(1)1 , . . . , c(1)k , with even k, satisfying
c
(1)
k/2+1 = −c(1)1 , . . . , c

(1)
k = −c(1)k/2

repeat
Uniquely assign data points to closest centroids:
S
(t)
i =

{
x ∈ S : ∀j, 〈x, c(t)i 〉 ≥ 〈x, c

(t)
j 〉
}

Re-adjust centroids to normalized cluster means:
1. ∀i ∈ {1, . . . , k/2}:
c
(t+1)
i =

∑
x∈S(t)

i
x−

∑
x∈S(t)

i+k/2

x

2. ∀i ∈ {k/2 + 1, . . . , k}: c(t+1)
i = −c(t+1)

i−k/2

3. normalize c(t)i to unit `2 norm
until converged


