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Appendix

A. Proof of Theorem 1 and Theorem 2
The proofs of two theorems are almost identical with
a single difference selecting initial parameter on which
the soft-thresholding is performed. In the proof, we de-
note this initial parameter, i.e., (X>X + εI)−1X>y or[
Tν
(
X>X
n

)]−1X>y
n by θ̄.

Let ∆ be the error vector, θ̂ − θ∗. Since we choose λn
greater thanR∗(|θ∗ − θ̄),

R∗(∆) = R∗(θ̂ − θ̄ + θ̄ − θ∗)

≤ R∗(θ̂ − θ̄) +R∗(θ∗ − θ̄) ≤ 2λn (9)

where we utilize the fact that θ̂ is feasible.

For notational simplicity, we use (S, Sc) instead of an ar-
bitrary subspace pair (M,M⊥). Additionally, we use the
notion ∆S to represent the `2 projection onto the model
space M. Then, by the assumption of the statement that
θ∗Sc = 0, and the decomposability of R(·) with respect to
(S, Sc),

R(θ∗) =R(θ∗) +R(∆Sc)−R(∆Sc)

=R(θ∗ + ∆Sc)−R(∆Sc)

(i)

≤ R(θ∗ + ∆Sc + ∆S) +R(∆S)−R(∆Sc)

=R(θ∗ + ∆) +R(∆S)−R(∆Sc) (10)

where the equality (i) holds by the triangle inequality,
which is the basic property of norms. Since we minimize
the objectiveR(θ) in (4) or (6), we obtain the inequality of
R(θ∗ + ∆) = R(θ̂) ≤ R(θ∗). Combining this inequality
with (10), we have

0 ≤ R(∆S)−R(∆Sc) (11)

Armed with inequalities (9) and (11), we utilize the
Hölder’s inequality and the decomposability of our regu-
larizer R(·) in order to derive the error bounds in terms of
`2 norm:

‖∆‖22 = 〈∆,∆〉 ≤ R∗(∆)R(∆)

≤ R∗(∆)
(
R(∆S) +R(∆Sc)

)
.

Since the error vector ∆ satisfies the inequality (11),

‖∆‖22 ≤ 2R∗(∆)R(∆S).

Combining all the pieces together yields

‖∆‖22 ≤ 4Ψ(S)λn‖∆S‖2 (12)

where Ψ(M) is the abbreviation for Ψ(S, ‖ · ‖2).

Notice that the projection operator is non-expansive,
‖∆S‖22 ≤ ‖∆‖22. Hence, we obtain ‖∆S‖2 ≤ 4Ψ(S)λn,
and plugging it back into (12) yields the `2 error bounds.

Finally, the error bounds in terms of the regularizer itself
are straightforward from the following reasoning:

R(∆) = R(∆S) +R(∆Sc) ≤ 2R(∆S)

≤ 2Ψ(S)‖∆S‖2 ≤ 8[Ψ(S)]2λn.

B. Useful lemma(s)
Lemma 1 (Lemma 1 of (Ravikumar et al., 2011)). Let A
be the event that∥∥∥∥X>Xn − Σ

∥∥∥∥
∞
≤ 8(max

i
Σii)

√
10τ log p′

n

where p′ := max{n, p} and τ is any constant greater than
2. Suppose that the design matrix X is i.i.d. sampled from
Σ-Gaussian ensemble with n ≥ 40 maxi Σii. Then, the
probability of event A occurring is at least 1− 4/p′τ−2.

Lemma 2 (In the proof of Corollary 2 (Negahban et al.,
2012)). By the conditions of (C-OLS2), and the sub-
Gaussian property of noise w,

P

(
‖X>w‖∞

n
≥ t
)
≤ 2 exp(− nt

2

2σ2
+ log p)

C. Proof of Proposition 1
By Lemma 1, we have the event A:∥∥∥∥X>Xn − Σ

∥∥∥∥
∞
≤ 8(max

i
Σii)

√
10τ log p′

n

with high probability specified in the statement of lemma.
Conditioned on A, Tν

(
X>X
n

)
with the specific choice of ν

in the statement, has larger diagonal entries and smaller off-
diagonal entries than Σ. Therefore, on the A, Tν

(
X>X
n

)
is

diagonally dominant, and hence invertible.

D. Proof of Corollary 2
In order to utilize Theorem 2, we need to derive the upper
bound of

∥∥θ∗ − [Tν(X>Xn )]−1X>y
n

∥∥
∞:

‖θ∗ − θ̄‖∞

=
∥∥∥[Tν(X>X

n

)]−1

Tν
(X>X

n

)
θ∗ −

[
Tν
(X>X

n

)]−1X>y

n

∥∥∥
∞

≤
∣∣∣∣∣∣∣∣∣[Tν(X>X

n

)]−1∣∣∣∣∣∣∣∣∣
∞

∥∥∥Tν(X>X
n

)
θ∗ − X>y

n

∥∥∥
∞

We first control |||
[
Tν
(
X>X
n

)]−1|||∞ term. We are going

to show that Tν
(
X>X
n

)
is diagonally dominant with high
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probability hence the term we care about will be bound.
By Lemma 1, if n > 40 maxi Σii, the event A occurs with
probability at least 1 − 4/p′τ−2 for p′ := max{n, p} and
any constant τ > 2. Conditioned on A, for all row index i,[

Tν

(X>X
n

)]
ii

−
∑
j 6=i

∣∣∣∣∣
[
Tν

(X>X
n

)]
ij

∣∣∣∣∣
≥
(

Σii − a
√

log p′

n
+ ν

)
−
∑
j 6=i

(
|Σij |+ a

√
log p′

n
− ν
)
.

where a := 8(maxi Σii)
√

10τ .

Therefore, provided ν := a
√

log p′

n ,

[
Tν

(X>X
n

)]
ii

−
∑
j 6=i

∣∣∣∣∣
[
Tν

(X>X
n

)]
ij

∣∣∣∣∣
≥ Σii −

∑
j 6=i

|Σij | ≥ δi ≥ δmin.

Note that conditioned on A, the matrix Tν
(
X>X
n

)
is in-

vertible since it is strictly diagonally dominant matrix, and∣∣∣∣∣∣[Tν(X>Xn )]−1∣∣∣∣∣∣
∞ ≤

1
δmin

by Varah (1975).

Now consider the second term
∥∥∥Tν(X>Xn )

θ∗ − X>y
n

∥∥∥
∞

in the equality:∥∥∥Tν(X>X
n

)
θ∗ − X>y

n

∥∥∥
∞

=
∥∥∥Tν(X>X

n

)
θ∗ − X>X

n
θ∗ +

X>X

n
θ∗ − X>y

n

∥∥∥
∞

≤
∥∥∥Tν(X>X

n

)
θ∗ − X>X

n
θ∗ − X>w

n

∥∥∥
∞

≤
∥∥∥Tν(X>X

n

)
θ∗ − X>X

n
θ∗
∥∥∥
∞

+
∥∥∥X>w

n

∥∥∥
∞
.

Since ‖X
>w‖∞
n can be upper-bounded by 2σ

√
log p
n as

stated in Lemma 2, the only remaining term to con-
trol is

∥∥∥(Tν(X>Xn )
− X>X

n

)
θ∗
∥∥∥
∞

. Each element of

Tν
(
X>X
n

)
− X>X

n is upper-bounded by ν by construc-

tion, which is set a
√

log p′

n . Therefore, for every entry of(
Tν
(
X>X
n

)
− X>X

n

)
θ∗, we can apply Hölder inequality

so that it is bound by a
√

log p
n ‖θ

∗‖1.

Therefore, if we select λn as

1

δmin

(
2σ

√
log p′

n
+ a

√
log p′

n
‖θ∗‖1

)
,

the constraint ‖θ∗−θ̄‖∞ ≤ λn with high probability, which
completes the proof.

E. Proof of Corollary 3
For any v ∈ Rp, the maximum absolute element of[
Tν

(
X>X
n

)]−1

v is bounded by

∥∥∥[Tν(X>X
n

)]−1

v
∥∥∥
∞
≤
∣∣∣∣∣∣∣∣∣[Tν(X>X

n

)]−1∣∣∣∣∣∣∣∣∣
∞
‖v‖∞.

Moreover, since the maximum group cardinality is m, we
have∥∥∥[Tν(X>X

n

)]−1

v
∥∥∥∗
G,α
≤
∥∥∥[Tν(X>X

n

)]−1

v
∥∥∥
∞
m1/α∗

≤
∣∣∣∣∣∣∣∣∣[Tν(X>X

n

)]−1∣∣∣∣∣∣∣∣∣
∞
‖v‖∞m1/α∗

Now, we can derive the upper bound of ‖θ∗ − θ̄‖∗G,α:

‖θ∗ − θ̄‖∗G,α

=
∥∥∥[Tν(X>X

n

)]−1

Tν
(X>X

n

)
θ∗ −

[
Tν
(X>X

n

)]−1X>y

n

∥∥∥∗
G,α

≤
∣∣∣∣∣∣∣∣∣[Tν(X>X

n

)]−1∣∣∣∣∣∣∣∣∣
∞

∥∥∥Tν(X>X
n

)
θ∗ − X>y

n

∥∥∥
∞
m1/α∗ .

Finally, by the same reasoning and conditions as in Sec-
tion D, we have, conditioned on the event A,

‖θ∗ − θ̄‖∗G,α ≤
m1/α∗

δmin

(
2σ

√
log p′

n
+ a

√
m log p′

n
‖θ∗‖1

)
.

Therefore, given the choice of λn as in the statement, we
have ‖θ∗ − θ̄‖∗G,α ≤ λn with high probability, and we can
directly apply Theorem 2.
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