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Appendix

A. Proof of Proposition 3
Consider an arbitrary parameter µ̃ =

∑
i c̃iãi in the feasi-

ble set of parameters that satisfy the constraint of (6).

Let PM denote the matrix corresponding to the projection
operator for the subspaceM.

Since µ̃ should satisfy the constraint ofR∗(µ̂n − µ̃) ≤ λn,
for any fixed index i in the atoms of µ̂n,

R
(
Pa∗i

(
µ̂n − µ̃

))
=R

(∑
j

c̃jPa∗i
(ãj)− c∗i a∗i

)
≤ λn,

which implies max{c∗i − λn, 0} ≤ R
(∑

j c̃jPa∗i
(ãj)

)
.

By summing over all i, we obtain

R(µ̂) =
∑
i

max{c∗i − λn, 0} ≤
∑
i

R
(∑

j

c̃jPa∗i
(ãj)

)
(i)
= R

(∑
j

c̃j
∑
i

Pa∗i
(ãj)

)
= R

(∑
j

c̃j ãj

)
= R(µ̃).

Finally, since we can simply verify that µ̂ is also feasible,
we can conclude that µ̂ is the optimal of (6).

B. Proof of Theorem 1
Let ∆ := µ̂− µ∗ be the error vector that we are interested
in.

R∗(µ̂− µ∗) = R∗(µ̂− µ̂n + µ̂n − µ∗)
≤ R∗(µ̂n − µ̂) +R∗(µ̂n − µ∗) ≤ 2λn

By the fact that µ∗M⊥ = 0, and the decomposability of R
with respect to (M,M⊥),

R(µ∗)

=R(µ∗) +R
[
ΠM̄⊥(∆)

]
−R

[
ΠM̄⊥(∆)

]
=R

[
µ∗ + ΠM̄⊥(∆)

]
−R

[
ΠM̄⊥(∆)

]
(i)

≤ R
[
µ∗ + ΠM̄⊥(∆) + ΠM̄(∆)

]
+R

[
ΠM̄(∆)

]
−R

[
ΠM̄⊥(∆)

]
=R

[
µ∗ + ∆

]
+R

[
ΠM̄(∆)

]
−R

[
ΠM̄⊥(∆)

]
(18)

where the equality (i) holds by the triangle inequality of
norm. Since (6) minimizes R(µ̂), we have R(µ∗ + ∆) =
R(µ̂) ≤ R(µ∗). Combining this inequality with (18),

R
[
ΠM̄⊥(∆)

]
≤ R

[
ΠM̄(∆)

]
. (19)

Moreover, by Hölder’s inequality and the decomposability
ofR(·),

‖∆‖22 = 〈〈∆,∆〉〉 ≤ R∗(∆)R(∆) ≤ 2λnR(∆)

= 2λn
[
R(ΠM̄(∆)) +R(ΠM̄⊥(∆))

]
≤ 4λnR(ΠM̄(∆))

≤ 4λnΨ(M)‖ΠM̄(∆)‖2 (20)

where Ψ(M) is a simple notation for Ψ(M, ‖ · ‖2).

Since the projection operator is defined in terms of ‖ · ‖2
norm, it is non-expansive: ‖ΠM̄(∆)‖2 ≤ ‖∆‖2. There-
fore, by (20), we have

‖ΠM̄(∆)‖2 ≤ 4λnΨ(M), (21)

and plugging it back into (20) yields the error bound (10).

Finally, (11) is straightforward from (19) and (21)

R(∆) ≤ 2R(ΠM̄(∆))

≤ 2Ψ(M)‖ΠM̄(∆)‖2 ≤ 8λnΨ(M)2.

C. Proof of corollaries: Covariance
Estimation in Section 4.1

In order to leverage Theorem 1, two ingredients need to be
specified: (i) the convergence rate of R∗(µ̂n − µ∗) for λn
to satisfy λn ≥ R∗(µ̂n − µ∗), and (ii) the compatibility
constant Ψ(M). In each corollary, we are going to show
how these two components can be computed.

C.1. Proof of Corollary 1

For this case, we can directly appeal to the well known
bound (e.g., the Lemma 1 of (Ravikumar et al., 2011)):
Consider the following event:

P (‖Σ̂n − Σ‖∞,off > δ)

≤ 4 exp
(
− nδ2

3200(maxi Σii)2
+ log p2

)
.

By setting δ = 40(maxi Σii)
√

2τ log p
n , we see that

the choice of λn is valid with probability at least 1 −
C1 exp(−C2nλ

2
n).

For the second ingredient, letM = M correspond to the
support of Σ∗. We have ψ(M, ‖ · ‖2) =

√
s, where s is the

cardinality of the support of Σ∗.

C.2. Proof of Corollary 2

R∗(Σ̂n − Σ∗) = maxl=1,...,L

∥∥∥[Σ̂n]Gl − [Σ∗]Gl

∥∥∥
ν?
. For a

given entry (i, j) we have

P (|[Σ̂n]ij − Σ∗ij | > t) ≤ C1 exp(−C2nt
2).
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For a given group Gl, by union bound over the group ele-
ments, we have

P (|[Σ̂n]ij − Σ∗ij | > t for all (i, j) ∈ Gl)
≤ C1 exp(−C2nt

2 + log d).

This implies that

P (‖[Σ̂n]Gl−Σ∗Gl‖ν? > td1/ν?) ≤ C1 exp(−C2nt
2+log d).

By a union bound over all groups we obtain

P

(
max

l=1,...,L
‖[Σ̂n]Gl − Σ∗Gl‖2 > td1/ν?

)
≤ C1 exp(−C2nt

2 + log d+ logL).

This yields

P

(
max

l=1,...,L
‖[Σ̂n]Gl − Σ∗Gl‖2 > δ

)
≤ C1 exp(−C2nd

−2/ν?δ2 + log d+ logL).

We conclude by setting δ = d1/ν?
√

(log d+ logL)/n. Let
M = M correspond to the support of Σ∗, which can be
written as a union of groups in G. Since ν ≥ 2, we have
ψ(M, ‖ · ‖F ) =

√
k.

D. Proof of Theorem 2
In this proof, we consider the matrix parameter such as
the covariance. Basically, the Frobenius norm can be sim-
ply replaced by `2 norm for the vector parameters. Let
∆α := µ̂α−µ∗α, and ∆ := µ̂−µ∗ =

∑
α∈I ∆α. The error

bound (14) can be easily shown from the assumption in the
statement with the constraint of (13). For every α ∈ I ,

R∗α(∆) = R∗α(µ̂− µ∗) = R∗α(µ̂− µ̂n + µ̂n − µ∗)
≤ R∗α(µ̂n − µ̂) +R∗α(µ̂n − µ∗) ≤ 2λα. (22)

By the similar reasoning as in (18) with the fact that
ΠM⊥α (µ∗α) = 0 in (C3), and the decomposability of Rα
with respect to (Mα,M⊥α ), we have

Rα(µ∗α) ≤ Rα
[
µ∗α + ∆α

]
+Rα

[
ΠM̄α

(∆α)
]

−Rα
[
ΠM̄⊥α (∆α)

]
. (23)

Since {µ̂α}α∈I minimizes the objective function of (13),∑
α∈I

λαRα(µ̂α) ≤
∑
α∈I

λαRα(µ∗α).

Combining this inequality with (23), we have∑
α∈I

λαRα(µ̂α) ≤
∑
α∈I

λα

{
Rα(µ∗α + ∆α)

+Rα
[
ΠM̄α

(∆α)
]
−Rα

[
ΠM̄⊥α (∆α)

]}
,

which implies∑
α∈I

λαRα
[
ΠM̄⊥α (∆α)

]
≤
∑
α∈I

λαRα
[
ΠM̄α

(∆α)
]
, (24)

Now, for each structure α ∈ I , we have an application
of Hölder’s inequality; |〈〈∆,∆α〉〉| ≤ R∗α(∆)Rα(∆α) ≤
2λαRα(∆α) where the notation 〈〈A,B〉〉 denotes the trace
inner product, trace(A>B) =

∑
i

∑
j AijBij , and we use

the pre-computed bound in (22). Then, the Frobenius error
‖∆‖F can be upper-bounded as follows:

‖∆‖2F = 〈〈∆,∆〉〉 =
∑
α∈I
〈〈∆,∆α〉〉 ≤

∑
α∈I
|〈〈∆,∆α〉〉|

≤ 2
∑
α∈I

λαRα(∆α) ≤ 2
∑
α∈I

{
λαRα

[
ΠM̄α

(∆α)
]
+

λαRα
[
ΠM̄⊥α (∆α)

]}
≤ 4

∑
α∈I

λαRα
[
ΠM̄α

(∆α)
]

≤ 4
∑
α∈I

λαΨ(Mα) ‖ΠM̄α
(∆α)‖F (25)

where Ψ(Mα) denotes the compatibility constant of space
Mα with respect to the Frobenius norm: Ψ(Mα, ‖ · ‖F ).

Here, we define a key notation in the error bound:

Φ := max
α∈I

λαΨ(Mα).

Armed with this notation, (25) can be rewritten as

‖∆‖2F ≤ 4Φ
∑
α∈I
‖ΠM̄α

(∆α)‖F (26)

At this point, we directly appeal to the result in Proposition
2 of (Yang & Ravikumar, 2013) with a small modification:

Proposition 4. Suppose that the structural incoherence
condition (C4) as well as the condition (C3) hold. Then,
we have

2|
∑
α<β

〈〈∆α,∆β〉〉| ≤
1

2

∑
α∈I
‖∆α‖2F .

By this proposition, we have∑
α∈I
‖∆α‖2F ≤ ‖∆‖2F + 2|

∑
α<β

〈〈∆α,∆β〉〉|

≤ ‖∆‖2F +
1

2

∑
α∈I
‖∆α‖2F ,

which implies
∑
α∈I ‖∆α‖2F ≤ 2‖∆‖2F .

Moreover, since the projection operator is defined in terms
of the Frobenius norm, it is non-expansive for all α:
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‖ΠM̄α
(∆α)‖F ≤ ‖∆α‖F . Hence, we finally obtain

(∑
α∈I
‖ΠM̄α

(∆α)‖F
)2

≤
(∑
α∈I
‖∆α‖F

)2

≤ |I|
∑
α∈I
‖∆α‖2F ≤ 8|I|Φ

∑
α∈I
‖ΠM̄α

(∆α)‖F ,

and therefore, ∑
α∈I
‖ΠM̄α

(∆α)‖F ≤ 8|I|Φ (27)

The Frobenius norm error bound (16) can be derived by
plugging (27) back into (26):

‖∆‖F ≤ 32|I|Φ2.

The proof of the final error bound (15) is straightforward
from (24) and (27) as follows: for each fixed α ∈ I ,

Rα(∆α)

≤ 1

λα

{
λαRα

[
ΠM̄α

(∆α)
]

+ λαRα
[
ΠM̄⊥α (∆α)

]}
≤ 1

λα

{
λαRα

[
ΠM̄α

(∆α)
]

+
∑
β∈I

λβRβ
[
ΠM̄β

(∆β)
]}

≤ 2

λα

∑
β∈I

λβRβ
[
ΠM̄β

(∆β)
]

≤ 2

λα

∑
β∈I

λβΨ(Mβ)‖ΠM̄β
(∆β)‖F

≤ 2Φ

λα

∑
β∈I

‖ΠM̄β
(∆β)‖F ≤

16|I|Φ2

λα
,

which completes the proof.

D.1. Proof of Corollary 3

The proof for an element-wise sparse component is already
proven in Section C.1. At the same time, for a low-rank
component, we can directly appeal to the results for clean
models (Agarwal et al., 2012):

λ1 = 4
√
|||Σ∗|||2

√
p

n
≥ |||Σ∗ − Σ̂n|||2

with probability at least 1 − 2 exp(−C1p). The subspace
compatibility of any matrix A with rank k can be easily
derived as

sup
A6=0

|||A|||∗
‖A‖F

≤
√
k1.

E. A Parallel Proximal algorithm for
“Elem-Super-Moment” Estimation

The class of “Elem-Super-Moment” estimators solves

minimize
µ1,µ2,...,µ|I|

∑
α∈I

λαRα(µα)

s. t.R∗α(µ̂n − µ) ≤ λα for ∀α ∈ I

µ =
∑
α∈I

µα. (28)

Let µ = (µ1, µ2, . . . , µ|I|). Consider the operators
Lα(µ) = µα, for α ∈ I and Ltot(µ) =

∑
α∈I µα. Then

the problem can be rewritten as

minimize
µ

∑
α∈I

λαRα(Lα(µ))

s. t.R∗α(µ̂n − Ltot(µ)) ≤ λα for ∀α ∈ I. (29)

For all α ∈ I let

fα(·) = λαRα(Lα(·)).

Define the indicator function of a set C as

ıC : x 7→

{
0, if x ∈ C
+∞, if x /∈ C.

and let
gα(·) = ı(R∗α(µ̂n−Ltot(·))≤λα).

Then observe that (29) can be rewritten as

minimize
µ̄1,...µ̄|I|,µ̃1,...µ̃|I|

∑
α∈I

fα(µ̄α) +
∑
α∈I

gα(µ̃α)

s. t. µ̄1 = . . . = µ̄|I| = µ̃1 = . . . = µ̃|I|.

(30)

We can then apply the parallel proximal method (Algo-
rithm 3.1 of Combettes & Pesquet (2008)), which is derived
from the classical Douglas-Rachford algorithm (Combettes
& Pesquet, 2008), and obtain Algorithm 1. In this splitting
algorithm, each function fα is used separately via its own
proximal operator. The same holds for each function gα.
Note that

prox2|I|γfα = prox2|I|γλαRα◦Lα

and
prox2|I|γgα = prox2|I|γı(R∗α(µ̂n−Ltot())≤λα)

For various popular choices of regularization Rα these
proximal operators have simple closed-form formulas.
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This can be seen by applying Lemma 2.4 of Combettes
& Pesquet (2008) which states that if L is a bounded linear
operator such that L ◦L∗ = κId for some finite κ > 0 then

proxh◦L = Id +
1

κ
L∗ ◦ (proxκh − Id) ◦ L.

and by noting that Lα and Ltot are such bounded linear op-
erators.

Algorithm 1 Parallel proximal algorithm

Initialization: γ > 0, (µ̄0
α)α∈I and (µ̃0

α)α∈I
Set µ0 = 1

2|I|
∑
α∈I(µ̄

0
α + µ̃0

α).

for i = 0, 1, . . . do
for α ∈ I do
p̄iα = prox2|I|γfαµ̄

i
α and p̃iα = prox2|I|γgαµ̃

i
α.

end for
pi = 1

2|I|
∑
α∈I(p̄

i
α + p̃iα).

0 < ρi < 2
for α ∈ I do
µ̄i+1
α = µ̄iα + ρi(2p

i − µi − p̄iα).
µ̃i+1
α = µ̃iα + ρi(2p

i − µi − p̃iα).
end for
µi+1 = µi + ρi(p

i − µi).
end for


