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Appendix
A. Proof of Proposition 3

Consider an arbitrary parameter i = ) . ¢;a; in the feasi-
ble set of parameters that satisfy the constraint of (6).

Let Pa denote the matrix corresponding to the projection
operator for the subspace M.

Since [z should satisfy the constraint of R*(fi,,
for any fixed index ¢ in the atoms of iy,

R (Pa: (fin — 1))

=R(> &P
J

(&) ~ ciay) < A,

A0} < R(X;8Par (3))-

By summing over all ¢, we obtain

) = Zmax{cz‘ — A, 0} < ZR(Zéy
CR(DE D Par @) = R(

Finally, since we can simply verify that z is also feasible,
we can conclude that /i is the optimal of (6).

which implies max{c} —

5;‘53‘) = R(p)-

J

B. Proof of Theorem 1
Let A := i — p* be the error vector that we are interested
in.
R (@~ %) = R*(fi — fin + in — 1)
S R* (i — 1) + R (1in — p7) < 2X,

By the fact that 11}, = 0, and the decomposability of R
with respect to (M, ML),

(1)

(1*) + R (A)] = R[M e (A)]

[ T (8)] = R (A)]

[+ T () + T (A)] + R (A)]
= R (A)]
=R + Al + R[M(A)]

?d

R
R
R

INS

- Ry (A)]  (18)

where the equality (¢) holds by the triangle inequality of
norm. Since (6) minimizes R (&), we have R(u* + A) =
R(fx) < R(p*). Combining this inequality with (18),

R (A)] <R[y (A)]. (19)

Pa; (éj))

Moreover, by Holder’s inequality and the decomposability
of R(-),

IAZ = (A, A) <R (A)R(A) < 2X,R(A)
= 20 [R(IL (D)) + R(I s (A))] < AN R(IL i (A))
< AN T (M)ITL (A)]|2 (20)

where W (M) is a simple notation for W (M, || - ||2).

Since the projection operator is defined in terms of || - ||2
norm, it is non-expansive: ||ILy(A)|l2 < ||A]l2. There-
fore, by (20), we have

I (A)][2 < 4N, T(M), 1)

and plugging it back into (20) yields the error bound (10).
Finally, (11) is straightforward from (19) and (21)

R(A) < 2R(ILy(A))
< 20V [Ty ()2 < 8A, TR,

C. Proof of corollaries: Covariance
Estimation in Section 4.1

In order to leverage Theorem 1, two ingredients need to be
specified: (i) the convergence rate of R* (i1, — u*) for A,
to satisfy A, > R*(li, — ©*), and (ii) the compatibility
constant W(M). In each corollary, we are going to show
how these two components can be computed.

C.1. Proof of Corollary 1

For this case, we can directly appeal to the well known
bound (e.g., the Lemma 1 of (Ravikumar et al., 2011)):
Consider the following event:

P(|[£0 = los,ott > 9)

nd?
3 +log p?).

<dexp(— —10
- exp( 3200(max; X;;)?

27 logp

By setting 6 = 40(max; ¥;)/ ~ 22, we see that

the choice of ), is valid with probability at least 1 —
C1 exp(—Can2).

For the second ingredient, let M = M correspond to the
support of 3*. We have ¢)(M, || - [|2) = /s, where s is the
cardinality of the support of X*.

C.2. Proof of Corollary 2

R* (S, — $%) = maxj_1,.. 1 H[in]Gl — [¥*]¢,|| -Fora
given entry (¢, j) we have
P(|[Salij — B3] > t) < C1 exp(—Cont?).
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For a given group G, by union bound over the group ele-
ments, we have

P(|[Sali; — B3] > tforall (i, ) € Gy)
< Oy exp(—Cynt? +logd).
This implies that
P(|[E0)c,—25, v+ > td"/*") < Cy exp(—Cont®+log d).

By a union bound over all groups we obtain

P ( max ||[Enla, — g2 > td”“)

1=1,....L

< Oy exp(—Cont? +logd + log L).
This yields

P (e, IE2le, - =212 > 9)

1=1,...,L

<y exp(—C’gnd_W”* 62 +logd +log L).

We conclude by setting 0 = d'/v"\/(logd +log L) /n. Let
M = M correspond to the support of ¥*, which can be
written as a union of groups in G. Since ¥ > 2, we have

DM, |- Ir) = V.

D. Proof of Theorem 2

In this proof, we consider the matrix parameter such as
the covariance. Basically, the Frobenius norm can be sim-
ply replaced by /5 norm for the vector parameters. Let
Ao o= Jio —ph,and A =i —p* =37 A,. The error
bound (14) can be easily shown from the assumption in the
statement with the constraint of (13). For every a € I,

Ri(A) = R (i — 1) = R4 = fin + in — 1)
<R — B) + R (i — 1) < 2 (22)

By the similar reasoning as in (18) with the fact that
IMrs () = 0in (C3), and the decomposability of R,
with respect to (M, M), we have
Ra(1s) < Raps + Ba] + Ra[ll, (Aa)]
— Ra [z (Aa)]- (23)
Since {fiq } ocr minimizes the objective function of (13),
D AaRalfia) <Y AaRalih)-
acl acl
Combining this inequality with (23), we have

Z AaRa(ﬁa) < Z /\a{Ra(Nz =+ Aa)

+ Ra [Ty, (Aa)] = Ra [Ty (Aa)] },

which implies

D AaRa [ (Aa)] < AaRa [Ty, (Ad)], (24)

acl acl

Now, for each structure a € I, we have an application
of Holder’s inequality; |{A, Ay)| < RE(A) Ra(An) <
2AaRa(A,) where the notation ((A, B)) denotes the trace
inner product, trace(A" B) = Y, 3" ; AijBij, and we use
the pre-computed bound in (22). Then, the Frobenius error
||A]| p can be upper-bounded as follows:

IAIE = €A, A) =D (A Au) <D 1A, Au)

acl acl

<23 AaRa(Ba) 2 ) {AaRa [Ty, (A0)]+

acl acl

AaRa Mtz (Aa)] } <437 AaRa [Ty, (A0)]

aecl

< 42 /\a\II(/Wa) HHMQ (Aa)”F

acl

(25)

where U (M) denotes the compatibility constant of space
M, with respect to the Frobenius norm: ¥(M,, || - || 7).

Here, we define a key notation in the error bound:

P = v .
max Aq ¥ (M)
Armed with this notation, (25) can be rewritten as

IAIE < 49 Ty, (Ad)llr
acl

(26)

At this point, we directly appeal to the result in Proposition
2 of (Yang & Ravikumar, 2013) with a small modification:

Proposition 4. Suppose that the structural incoherence
condition (C4) as well as the condition (C3) hold. Then,
we have

2 3 (e As)I < 2 1Al

a<f acl

By this proposition, we have

D 1AlE < IAIE +21 ) (Aa, Ag)]

acl a<pf

1
<lANE+5 > 1Al

aecl
which implies Y o [[Aa |7 < 2] All3.

Moreover, since the projection operator is defined in terms
of the Frobenius norm, it is non-expansive for all a:
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I, (Aa)llF < [|Adall 7. Hence, we finally obtain

(3 g, (Aa)lr) < (ZIIA Ie)’
<UIY IAalE < 8l1@ S Ty, (

acl acl

(x)HFv

and therefore,

> T, (

acl

o)llF < 8|1]® @27)

The Frobenius norm error bound (16) can be derived by
plugging (27) back into (26):

|A|lF < 32|12

The proof of the final error bound (15) is straightforward
from (24) and (27) as follows: for each fixed o € I,

Ra(Aa)

< - ARl (A)] + AaRa I (4]}
)\—la{/\ Ra [, (Ad)] +%A5Rﬂ[ﬂw<ﬁ6ﬂ}
;Aﬁm [T, (Ag)]
= %Aﬁw(mmnmmgm
‘DBZ ML, (Al < 22
@ ger «

which completes the proof.

D.1. Proof of Corollary 3

The proof for an element-wise sparse component is already
proven in Section C.1. At the same time, for a low-rank
component, we can directly appeal to the results for clean
models (Agarwal et al., 2012):

— [p L@
N =Ty 2 2 15 - Sl

with probability at least 1 — 2exp(—C1p). The subspace
compatibility of any matrix A with rank & can be easily
derived as

All
Al e

A0 ||All

E. A Parallel Proximal algorithm for
“Elem-Super-Moment” Estimation

The class of “Elem-Super-Moment” estimators solves

minimize Z/\ Ra(ta)

154250, K1) wel
S.t.RE(An — ) < Ao forVael
1=l (28)
ael
Let = (p1,p2,...,p7). Consider the operators

Lo(p) = pra, for a € I and Li(p) = >, c; Ha- Then
the problem can be rewritten as

minimize Z AaRa(La(p))

I
acl

8.t R (Fn — Liot(p)) < Aq forVael. (29)

For all € I let

fa() = )‘aRa(La('))~

Define the indicator function of a set C' as

{o, ifrecC
1c T
+00,

ife ¢ C.

and let
9a (") = YR (fin—Lun(-)) Sha)-

Then observe that (29) can be rewritten as

minimize a(by) + oy
By By By g O;If (o) (;Ig (o)
S.t.ﬂl = :ﬂlll :[},1 =... :ﬁ’\[\
(30)

We can then apply the parallel proximal method (Algo-
rithm 3.1 of Combettes & Pesquet (2008)), which is derived
from the classical Douglas-Rachford algorithm (Combettes
& Pesquet, 2008), and obtain Algorithm 1. In this splitting
algorithm, each function f, is used separately via its own
proximal operator. The same holds for each function g,.
Note that

PIOXg 11y £ = PIOXg| 7|y A o RaoLa

and
PIOX2111vga = PIOX2| 1150 (R (7in - it )< 20)

For various popular choices of regularization R, these
proximal operators have simple closed-form formulas.
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This can be seen by applying Lemma 2.4 of Combettes
& Pesquet (2008) which states that if L is a bounded linear
operator such that L o L* = kld for some finite £ > 0 then

1
prox,., = Id + —L* o (prox,;, — Id) o L.
K

and by noting that L, and L, are such bounded linear op-
erators.

Algorithm 1 Parallel proximal algorithm

Initialization: v > 0, (70)wes and (f2)acr

Set p” = ﬁ S er (B + fa)-
fori=20,1,...do

for o € I do ‘ ‘
g% = PIOXy 1|y fo i, and p,, = PIOX97|yg, Fe, -
end for
p'= ﬁ > acr(Po + Do)
0< pi < 2
for o € I do
Pt = Po +pi(2p' = p' = Dy,).
Ao = g + pi(2p" — pt = Py).
end for
i1

pitt = pt+ pi(p' — ).

end for




