High-Dimensional Density Ratio Estimation with Extensions to Approximate Likelihood Computation

Rafael Izbicki, Ann Lee, Chad Schafer
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, PMLR 33:420-429, 2014.

Abstract

The ratio between two probability density functions is an important component of various tasks, including selection bias correction, novelty detection and classification. Recently, several estimators of this ratio have been proposed. Most of these methods fail if the sample space is high-dimensional, and hence require a dimension reduction step, the result of which can be a significant loss of information. Here we propose a simple-to-implement, fully nonparametric density ratio estimator that expands the ratio in terms of the eigenfunctions of a kernel-based operator; these functions reflect the underlying geometry of the data (e.g., submanifold structure), often leading to better estimates without an explicit dimension reduction step. We show how our general framework can be extended to address another important problem, the estimation of a likelihood function in situations where that function cannot be well-approximated by an analytical form. One is often faced with this situation when performing statistical inference with data from the sciences, due the complexity of the data and of the processes that generated those data. We emphasize applications where using existing likelihood-free methods of inference would be challenging due to the high dimensionality of the sample space, but where our spectral series method yields a reasonable estimate of the likelihood function. We provide theoretical guarantees and illustrate the effectiveness of our proposed method with numerical experiments.

Cite this Paper


BibTeX
@InProceedings{pmlr-v33-izbicki14, title = {{High-Dimensional Density Ratio Estimation with Extensions to Approximate Likelihood Computation}}, author = {Izbicki, Rafael and Lee, Ann and Schafer, Chad}, booktitle = {Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics}, pages = {420--429}, year = {2014}, editor = {Kaski, Samuel and Corander, Jukka}, volume = {33}, series = {Proceedings of Machine Learning Research}, address = {Reykjavik, Iceland}, month = {22--25 Apr}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v33/izbicki14.pdf}, url = {https://proceedings.mlr.press/v33/izbicki14.html}, abstract = {The ratio between two probability density functions is an important component of various tasks, including selection bias correction, novelty detection and classification. Recently, several estimators of this ratio have been proposed. Most of these methods fail if the sample space is high-dimensional, and hence require a dimension reduction step, the result of which can be a significant loss of information. Here we propose a simple-to-implement, fully nonparametric density ratio estimator that expands the ratio in terms of the eigenfunctions of a kernel-based operator; these functions reflect the underlying geometry of the data (e.g., submanifold structure), often leading to better estimates without an explicit dimension reduction step. We show how our general framework can be extended to address another important problem, the estimation of a likelihood function in situations where that function cannot be well-approximated by an analytical form. One is often faced with this situation when performing statistical inference with data from the sciences, due the complexity of the data and of the processes that generated those data. We emphasize applications where using existing likelihood-free methods of inference would be challenging due to the high dimensionality of the sample space, but where our spectral series method yields a reasonable estimate of the likelihood function. We provide theoretical guarantees and illustrate the effectiveness of our proposed method with numerical experiments.} }
Endnote
%0 Conference Paper %T High-Dimensional Density Ratio Estimation with Extensions to Approximate Likelihood Computation %A Rafael Izbicki %A Ann Lee %A Chad Schafer %B Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2014 %E Samuel Kaski %E Jukka Corander %F pmlr-v33-izbicki14 %I PMLR %P 420--429 %U https://proceedings.mlr.press/v33/izbicki14.html %V 33 %X The ratio between two probability density functions is an important component of various tasks, including selection bias correction, novelty detection and classification. Recently, several estimators of this ratio have been proposed. Most of these methods fail if the sample space is high-dimensional, and hence require a dimension reduction step, the result of which can be a significant loss of information. Here we propose a simple-to-implement, fully nonparametric density ratio estimator that expands the ratio in terms of the eigenfunctions of a kernel-based operator; these functions reflect the underlying geometry of the data (e.g., submanifold structure), often leading to better estimates without an explicit dimension reduction step. We show how our general framework can be extended to address another important problem, the estimation of a likelihood function in situations where that function cannot be well-approximated by an analytical form. One is often faced with this situation when performing statistical inference with data from the sciences, due the complexity of the data and of the processes that generated those data. We emphasize applications where using existing likelihood-free methods of inference would be challenging due to the high dimensionality of the sample space, but where our spectral series method yields a reasonable estimate of the likelihood function. We provide theoretical guarantees and illustrate the effectiveness of our proposed method with numerical experiments.
RIS
TY - CPAPER TI - High-Dimensional Density Ratio Estimation with Extensions to Approximate Likelihood Computation AU - Rafael Izbicki AU - Ann Lee AU - Chad Schafer BT - Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics DA - 2014/04/02 ED - Samuel Kaski ED - Jukka Corander ID - pmlr-v33-izbicki14 PB - PMLR DP - Proceedings of Machine Learning Research VL - 33 SP - 420 EP - 429 L1 - http://proceedings.mlr.press/v33/izbicki14.pdf UR - https://proceedings.mlr.press/v33/izbicki14.html AB - The ratio between two probability density functions is an important component of various tasks, including selection bias correction, novelty detection and classification. Recently, several estimators of this ratio have been proposed. Most of these methods fail if the sample space is high-dimensional, and hence require a dimension reduction step, the result of which can be a significant loss of information. Here we propose a simple-to-implement, fully nonparametric density ratio estimator that expands the ratio in terms of the eigenfunctions of a kernel-based operator; these functions reflect the underlying geometry of the data (e.g., submanifold structure), often leading to better estimates without an explicit dimension reduction step. We show how our general framework can be extended to address another important problem, the estimation of a likelihood function in situations where that function cannot be well-approximated by an analytical form. One is often faced with this situation when performing statistical inference with data from the sciences, due the complexity of the data and of the processes that generated those data. We emphasize applications where using existing likelihood-free methods of inference would be challenging due to the high dimensionality of the sample space, but where our spectral series method yields a reasonable estimate of the likelihood function. We provide theoretical guarantees and illustrate the effectiveness of our proposed method with numerical experiments. ER -
APA
Izbicki, R., Lee, A. & Schafer, C.. (2014). High-Dimensional Density Ratio Estimation with Extensions to Approximate Likelihood Computation. Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 33:420-429 Available from https://proceedings.mlr.press/v33/izbicki14.html.

Related Material