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We organize the appendices as follows:

• Appendix A: Proof of Theorem 2.1

• Appendix B: Proof of Corollary 2.2

• Appendix C: Alternative Proof and Generalzed Version of Corollary 2.3

• Appendix D: Proof of Theorem 3.3

• Appendix E: Derivation of Dual Problem for `1-Regularized Loss Minimization

• Appendix F: Examples of Computing dist(hj ,y)

• Appendix G: Remarks on Computing α

A. Proof of Theorem 2.1
Theorem 2.1 (Convergence Progress at Iteration t). Let ∆t and ∆t+1 be the optimality gaps after iterations t and t+ 1 of
Algorithm 2. Then for all t ≥ 1 if the algorithm does not converge at iteration t+ 1, we have

∆t+1 ≤ ∆t −
(
γ
2 τ

2
t ∆2

t

)1/3
. (6)

Proof. Note: throughout this proof, we use α to refer to αt+1 in order to simplify notation.

When α = 1, we have

∆t+1 = f(yt+1)− f(xt+1) (24)
= f(xt)− f(xt+1) (25)
≤ 0 . (26)

This is because Ct+1 includes all constraints active at xt, ensuring f(xt+1) ≥ f(xt). Thus, when α = 1, the algorithm
converges at iteration t+ 1, and the theorem holds.

To consider the case α < 1, we begin by writing

∆t+1 = f(yt+1)− f(xt+1) (27)
= [f(yt+1)− f(xt)] + [f(xt)− f(xt+1)] . (28)

Our approach is to bound these terms as functions of ∆t, τt, and α. We will eliminate α from this result by bounding over
all α ∈ [0, 1].

Bounding First Term in (28): Because f is strongly convex with parameter γ, we can write

f(yt+1) = f(αxt + (1− α)yt) (29)

≤ αf(xt) + (1− α)f(yt)− α(1− α)γ2 ‖xt − yt‖22 . (30)

This implies

f(yt+1)− f(xt) ≤ (1− α) [f(yt)− f(xt)]− α(1− α)γ2 ‖xt − yt‖22 (31)

= (1− α)∆t − α(1− α)γ2 ‖xt − yt‖22 . (32)

Furthermore, since yt+1 = αxt + (1− α)yt, we have

α(1− α)γ2 ‖xt − yt‖22 = α(1− α)γ2

[
‖yt+1 − yt‖22

α2

]
(33)

≥ (1− α)

α
γ
2 τ

2
t . (34)



BLITZ: Supplementary Material

Above, the inequality is true because α < 1 implies ‖yt+1 − yt‖2 ≥ τt; there exists an hj /∈ Ct such that hj(yt+1) = 0,
but since hj /∈ Ct, no point on the boundary of hj—yt+1 included—may be within a radius τt of yt.

Combining (32) and (34), we have

f(yt+1)− f(xt) ≤ (1− α)∆t −
(1− α)

α
γ
2 τ

2
t . (35)

Bounding the Second Term in (28): To bound the second term for the case that α < 1, let hj be the (possibly non-unique)
constraint such that hj(yt+1) = 0 and hj(xt) > 0, and recall the definition

dist(hj ,xt) = inf
z :hj(z)=0

‖z− xt‖2 . (36)

Because h(yt+1) = 0, the set {z : hj(z) = 0} is non-empty, and we can define zt as a value of z that minimizes
‖z− xt‖2 over this set. We have

dist(hj ,xt) = ‖zt − xt‖2 (37)

=
∥∥zt − 1

α (yt+1 − (1− α)yt)
∥∥
2

(38)

=
1− α
α

∥∥∥ −α1−αzt + 1
1−αyt+1 − yt

∥∥∥
2

(39)

≥ 1− α
α

τt . (40)

The last step is due to the convexity of hj and the fact that hj /∈ Ct (otherwise we could not have hj(xt) > 0 since xt is
feasible for all constraints in Ct). Applying convexity of hj , we have

hj

(
−α
1−αzt + 1

1−αyt+1

)
≥ 0 , (41)

since hj(zt) = hj(yt+1) = 0, and −α1−α + 1
1−α = 1 with the first term being negative. The fact that this affine combination

of zt and yt+1 violates (or is tight at) hj while yt is feasible for hj implies (40) since yt is at least a distance τt from the
boundary {z : hj(z) = 0} (since hj /∈ Ct).
We can use our bound on dist(hj ,xt) to bound f(xt)− f(xt+1).

f(xt)− f(xt+1) ≤ −(xt+1 − xt)
T∇f(xt)− γ

2 ‖xt+1 − xt‖22 (42)

≤ −γ2 ‖xt+1 − xt‖22 (43)

≤ −γ2dist(hj ,xt)
2 (44)

≤ −γ2
(1− α)2

α2
τ2t . (45)

Above the first inequality results from strong convexity. The second inequality requires an optimality conditions argument.
In particular xt minimizes f subject to constraints {hj : hj(xt) = 0}, while xt+1 minimizes f subject to a superset
of these constraints. This means xt+1 is feasible for the first problem and (xt+1 − xt)

T∇f(xt) ≥ 0. Finally, the third
inequality results from the fact that xt+1 cannot violate hj .

Completing the Proof: Adding (35) and (45), we have

∆t+1 ≤ (1− α) ∆t −
(1− α)

α
γ
2 τ

2
t −

(1− α)2

α2
γ
2 τ

2
t (46)

= (1− α) ∆t −
1− α
α2

γ
2 τ

2
t (47)

= (1− α)

(
∆t −

1

α2
γ
2 τ

2
t

)
. (48)

It is worth noting that this partial result formalizes the main intuition for BLITZ. When α is close to 1, yt becomes close
to xt−1 and the resulting suboptimality gap becomes small (via the left part of (48)). At the same time, if α is close to 0,
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there must exist an hj that is substantially violated by xt−1. As a result, f(xt) improves significantly from f(xt−1) and
the resulting suboptimality gap again becomes small (this time via the right side of (48)).

We complete our proof by bounding (48) over all α ∈ [0, 1]. A relatively simple bound is the following:

∆t+1 ≤ ∆t −
(
γ
2 τ

2
t ∆2

t

)1/3
. (49)

This can be obtained by solving for α in

α∆t =
1

α2
γ
2 τ

2
t (50)

and then writing ∆t+1 ≤ (1− α′)∆t where α′ is the solution from above.

B. Proof of Corollary 2.2
Corollary 2.2 (Linear Convergence). For t ≥ 1, define

∆′t = f(yt)− f(xt−1) , (7)

and suppose we run Algorithm 2 choosing τt as

τt =
√

2
γ (1− r)3∆′t (8)

for some r ∈ [0, 1). Then for t ≥ 1, we have

f(yt)− f(x?) ≤ rt−1∆0 . (9)

Proof. The proof is a direct application of Theorem 2.1. However, since ∆t is not known when selecting τt, we instead use
∆′t to upper-bound ∆t. (To see that ∆′t upper-bounds ∆t, note that since all constraints that are tight at xt−1 are included
in the working set at iteration t, we have f(xt) ≥ f(xt−1). Plugging into the definitions of ∆t and ∆′t, we have ∆′t ≥ ∆t.)

Applying Theorem 2.1 while choosing τt as in (8), we have

∆t ≤ ∆t−1 −
(
1
2γτ

2
t−1∆2

t−1
)1/3

(51)

= ∆t−1 −
(
(1− r)3∆′t−1∆2

t−1
)1/3

(52)
≤ ∆t−1 − (1− r)∆t−1 (53)
= r∆t−1 . (54)

This completes our proof.

C. Alternative Proof and Generalized Version of Corollary 2.3
Corollary 2.3 immediately follows from Theorem 2.1. In this appendix, we present a simpler alternative proof. Further-
more, this proof leads to a more general constraint elimination rule. In particular, while Corollary 2.3 is assumed to be
used with the BLITZ algorithm (and subproblems are assumed to be solved exactly), the more general rule can be applied
with any feasible point y and suboptimality gap ∆.

Recall Corollary 2.3:

Corollary 2.3 (Constraint Elimination). For t ≥ 1, define ∆′t as in (7). If

dist(hj ,yt) >
√

2
γ∆′t , (10)

then hj(x?) < 0, and hj may be eliminated from (P1).

Here we prove the following:
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Theorem C.1 (FLEX Constraint Elimination). For (P1), let y be any feasible point and let ∆ be a suboptimality gap such
that f(y)− f(x?) ≤ ∆. If

dist(hj ,y) >
√

2
γ∆ , (55)

then hj(x?) < 0, and hj may be eliminated from (P1).

Proof. By optimality conditions of (P1), we know

〈∇f(x?),y − x?〉 ≥ 0 . (56)

By strong convexity of f , we have

f(y) ≥ f(x?) + 〈∇f(x?),y − x?〉+ γ
2 ‖y − x?‖22 (57)

≥ f(x?) + γ
2 ‖y − x?‖22 . (58)

Assume dist(hj ,y) >
√

2
γ∆ . This implies

‖y − x?‖22 ≤ 2
γ [f(y)− f(x?)] (59)

≤ 2
γ∆ (60)

< dist(hj ,y)2 . (61)

We have shown dist(hj ,y) > ‖y − x?‖2 . By definition of dist(hj ,y), we must have hj(x?) < 0. Therefore, hj is not
active at the solution.

We note that in our experience, such screening/constraint elimination rules are rather conservative in general. This means
that for many problems, few constraints are eliminated unless the problem is somehow easy to begin with (in our case, if
the feasible point y is already close to the solution x?; in the `1-regularized learning case, screening rules perform best
when the regularization λ is large).

As a result, for hard problems, we find it much more efficient to be aggressive eliminating constraints and then peri-
odically reconsider constraints later. When reconsidering constraint hj in BLITZ, we compute dist(hj ,y) to determine
whether hj should be added to C. With dist(hj ,y) already computed, applying Theorem C.1 requires negligible additional
computation.

D. Proof of Theorem 3.3
Theorem 3.3 (Progress for `1 with Approximate Solver). For (P5), define ∆t as in (16), and assume xt and wt satisfy
(17). If αt+1 = 1, assume g(wt+1) ≥ g(wt). If αt+1 < 1, let hj be the (possibly non-unique) constraint such that
hj(xt) > 0 and hj(yt+1) = 0 and assume g(wt+1) ≥ max

δ
g(wt + δej). Then for t ≥ 1, we have

∆t+1 ≤ max
{

∆t −
(

1
2L (1− εt)2τ2t ∆2

t

)1/3
, εt∆t

}
. (18)

This proof is similar to the proof of Theorem 2.1. The main addition is the incorporation of partial subproblem solutions.
The relation between xt and wt as defined in (15) is important, and for this reason, our proof applies only to the `1-
regularized loss minimization problem and not the general setting of Theorem 2.1.

Like in the proof of Theorem 2.1, we use α to refer to αt+1. Note that when α = 1, we have

∆t+1 = f(yt+1)− g(wt+1) (62)
= f(xt)− g(wt+1) (63)
≤ f(xt)− g(wt) (64)
≤ εt(f(xt)− f(yt)) (65)
= εt∆t . (66)
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Thus, when α = 1, the theorem holds. For the remainder of the proof, we consider the case α < 1. We write

∆t+1 = f(yt+1)− g(wt+1) (67)
= f((1− α)yt + αxt)− g(wt+1) (68)

≤ (1− α)f(yt) + αf(xt)− 1
2Lα(1− α) ‖xt − yt‖22 (69)

= (1− α) [f(yt)− g(wt)] + α [f(xt)− g(wt)] + [g(wt)− g(wt+1)]− 1
2Lα(1− α) ‖xt − yt‖22 (70)

≤ (1− α)∆t + αεt∆t + [g(wt)− g(wt+1)]− 1
2Lα(1− α) ‖xt − yt‖22 (71)

= (1− α(1− εt))∆t − 1
2Lα(1− α) ‖xt − yt‖22 + [g(wt)− g(wt+1)] . (72)

The remaining steps of the proof bound the second and third terms of (72) as functions of α and τt. We then achieve the
final result by bounding over all α ∈ [0, 1].

For the second term of (72), we have

1
2Lα(1− α) ‖xt − yt‖22 = 1

2Lα(1− α)

[
‖yt+1 − yt‖22

α2

]
(73)

≥ 1− α
α

1
2Lτ

2
t . (74)

The inequality above results from the definition of α, the condition α < 1, and the definition of τt (‖yt+1 − y‖2 must be
at least τt, otherwise α must be 1).

Now let us consider the third term of (72). Recall that xt = ξt · p(Awt,b), where p maps dual variables wt to the primal
variables xt and ξt ∈ [0, 1] scales this result toward 0 so that xt satisfies all constraints in Ct. Since α < 1, there must be
an hj such that hj(xt) > 0, hj(yt+1) = 0, and hj(xt+1) ≤ 0. For this hj , we have

hj(yt+1) = 0 (75)

⇒
∣∣AT

j yt+1

∣∣− λ = 0 (76)

⇒
∣∣AT

j [αxt + (1− α)yt]
∣∣− λ = 0 (77)

⇒ α
∣∣AT

j xt
∣∣+ (1− α)

∣∣AT
j yt

∣∣− λ ≥ 0 (78)

⇒
∣∣AT

j xt
∣∣− λ ≥ (1− α)

α

(
λ−

∣∣AT
j yt

∣∣) (79)

⇒
∣∣AT

j xt
∣∣− λ

‖Aj‖2
≥ (1− α)

α

λ−
∣∣AT

j yt
∣∣

‖Aj‖2
(80)

⇒
∣∣AT

j xt
∣∣− λ

‖Aj‖2
≥ (1− α)

α
τt . (81)

Above we have used the fact that dist(hj ,yt) =
λ−|AT

j yt|
‖Aj‖2

≥ τt. Otherwise, hj would have been included in Ct, making
hj(xt) ≤ 0. Since ξt ∈ [0, 1] we have

∣∣AT
j p(Awt,b)

∣∣− λ
‖Aj‖2

≥ (1− α)

α
τt . (82)

However, AT
j p(Awt,b) is also the derivative of the loss

∑
i φi(a

T
i w) with respect to wj . Using standard coordinate
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descent analysis, if we consider minimizing −g(w) with an update at coordinate j, we have

g(wt)− g(wt+1) ≤ min
δj

g(wt)− g(wt + ejδ) (83)

≤ min
δ

L
2 ‖Aj‖22 δ2 + [AT

j p(Awt,b)]δ + λ |δ| (84)

≤ − 1
2L

[
λ−

∣∣AT
j p(Awt,b)

∣∣
‖Aj‖2

]2
(85)

≤ − 1
2L

(1− α)2

α2
τ2t . (86)

Above, the second inequality comes from our assumption that φi is smooth. Combining (86) and (74) with (72), we have

∆t+1 ≤ (1− α(1− εt)) ∆t −
(1− α)

α
1
2Lτ

2
t −

(1− α)2

α2
1
2Lτ

2
t (87)

= (1− α(1− εt)) ∆t −
1− α
α2

1
2Lτ

2
t (88)

= εt∆t + (1− α)

(
(1− εt)∆t −

1

α2
1
2Lτ

2
t

)
. (89)

We complete our proof by bounding over all α ∈ [0, 1]. A relatively simple bound is the following:

∆t+1 ≤ εt∆t + max
α∈[0,1]

min

{
(1− α)(1− εt)∆t,

(
(1− εt)∆t −

1

α2
1
2Lτ

2
t

)
+

}
(90)

= max
{
εt∆t,∆t −

(
1
2L (1− εt)2τ2t ∆2

t

)1/3}
. (91)

E. Derivation of Dual Problem for `1-Regularized Loss Minimization
In this appendix, we derive the dual of the `1-regularized learning problem from Section 3.

min
w

n∑
i=1

φi(a
T
i w) + λ ‖w‖1 = min

w

n∑
i=1

φ∗∗i (aTi w) + λ ‖w‖1 (92)

= min
w

n∑
i=1

max
xi

[
(aTi w)xi − φ∗i (xi)

]
+ λ ‖w‖1 (93)

= min
w

max
x
−

n∑
i=1

φ∗i (xi) + 〈Aw,x〉+ λ ‖w‖1 (94)

= max
x

min
w
−

n∑
i=1

φ∗i (xi) + 〈Aw,x〉+ λ ‖w‖1 (95)

= max
x
−

n∑
i=1

φ∗i (xi) + min
w
〈Aw,x〉+ λ ‖w‖1 (96)

= max
x : ‖ATx‖∞≤λ

n∑
i=1

−φ∗i (xi) . (97)

Note that φ∗i refers to the conjugate function of φi:

φ∗i (xi) = max
v
〈v, xi〉 − f(v) . (98)

We now derive this function for squared and logistic loss.
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E.1. Conjugate Function for Squared Loss

max
v
〈v, xi〉 − 1

2 (v − bi)2 = − 1
2b

2
i + max

v
(xi + bi)v − 1

2v
2 (99)

= − 1
2b

2
i + 1

2 (bi + xi)
2 (100)

by setting v = xi + bi.

E.2. Conjugate Function for Logistic Loss

We are looking to solve
max
v
〈v, xi〉 − log(1 + exp(−biv)) . (101)

Differentiating, we have

xi +
bi exp(−biv)

1 + exp(−biv)
= 0 (102)

⇒xi =
−bi exp(−biv)

1 + exp(−biv)
(103)

⇒ v = − 1

bi
log

( −xi
xi + bi

)
. (104)

We can substitute this into (101) to obtain

φ∗(xi) = −xi
bi

log

( −xi
xi + bi

)
− log

(
1− xi

xi + bi

)
(105)

= −xi
bi

log

(
−xi
bi

)
+
xi
bi

log

(
1 +

xi
bi

)
− log

(
1− xi

xi + bi

)
(106)

= −xi
bi

log

(
−xi
bi

)
+

(
1 +

xi
bi

)
log

(
1 +

xi
bi

)
. (107)

F. Examples of Computing dist(hj,y)

In this appendix, we briefly include examples for evaluating dist(hj ,y).

F.1. Linear Constraints

The most common scenario is that hj is linear. For some vector a and scaler b, let

hj(x) = aTx + b . (108)

In this case,

dist(hj ,y) = inf
z :hj(z)=0

‖z− y‖2 (109)

= ‖(y + µa)− y‖2 (110)
= |µ| ‖a‖2 , (111)

where the scaler µ is such that
hj(y + µa) = 〈a,y〉+ µ ‖a‖22 + b = 0 . (112)

This leaves us with

dist(hj ,y) =
|〈a,y〉+ b|
‖a‖2

. (113)
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F.2. Constraints for `1-Regularized Loss Minimization

When hj(x) =
∣∣AT

j x
∣∣− λ, the constraint hj can be viewed as the combination of two linear constraints:

h+j (x) = AT
j x− λ , and (114)

h−j (x) = −AT
j x− λ . (115)

In the BLITZ algorithm, the fact y is feasible implies
∣∣AT

j x
∣∣ ≤ λ and we have

dist(hj ,y) =
λ−

∣∣AT
j y
∣∣

‖Aj‖2
. (116)

F.3. Spherical Constraints

dist(hj ,y) is also easy to compute when {x : hj(x) = 0} is a sphere. Specifically, let

hj(x) = a ‖x− b‖22 − c . (117)

Assume a > 0 and also assume that c ≥ 0 since hj(x) ≤ 0 could never be satisfied otherwise. The minimizer of ‖z− y‖2
subject to hj(z) = 0 is given by

z? = b + µ(y − b) , (118)

where µ ≥ 1 is chosen such that hj(z?) = 0. More specifically, we have

aµ2 ‖y − b‖22 − c = 0 (119)

⇒ µ =

√
c

a

1

‖y − b‖22
. (120)

(121)

This implies

‖z? − y‖2 = ‖(µ− 1)(b− y)‖2 (122)
= (µ− 1) ‖y − b‖2 (123)

=

√
c

a
− ‖y − b‖2 . (124)

F.4. Smooth Constraints

For arbitrary hj , evaluating dist(hj ,y) is potentially difficult. Despite hj being convex, minimizing ‖z− y‖2 subject to
hj(z) = 0 is a not a convex problem in general due to the domain {z : hj(z) = 0}.
The guarantees of BLITZ still hold, however, if we use a lower bound of dist(hj ,y) when determining the working set. If
the gradient of hj exists and is Lipschitz continuous with constant L, then obtaining a lower bound is straightforward. We
can define

h′j(x) = hj(y) + (x− y)T∇hj(y) + L
2 ‖x− y‖22 . (125)

h′j(x) upper-bounds hj(x) for all x. As a result, the set {x : h′j(x) ≤ 0} is a subset of {x : hj(x) ≤ 0}, and we have

dist(h′j ,y) ≤ dist(hj ,y) . (126)

Evaluating dist(h′j ,y) is straightforward since {x : h′j(x) = 0} is a sphere.
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G. Remarks on Computing α
Here we briefly discuss how to compute α. Recall that

α = max {α′ ∈ [0, 1] : α′x + (1− α′)y ∈ D} . (127)

That is, α is chosen such that y = αx + (1− α)y is the closest feasible point to x on the line segment [y,x].

One way to find α is to define an αj for each constraint hj as

αj = max {α′ ∈ [0, 1] : hj(α
′x + (1− α′)y) ≤ 0} . (128)

Then we simply set
α = min

j
αj . (129)

If hj(x) ≤ 0, then clearly αj = 1. Otherwise, for general hj , evaluating (128) can be accomplished in logarithmic time
using the bisection algorithm. For the common case that hj is linear, αj can be computed in closed form:

hj(αjx + (1− αj)y) = 0 (130)
⇒ αjhj(x) + (1− αj)hj(y) = 0 (131)

⇒ αj =
−hj(y)

hj(x)− hj(y)
. (132)

Note that in BLITZ, hj(y) ≤ 0, and since any constraint for which hj(y) = 0 is included in C, it is always the case that
αj > 0.




