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Abstract
A classic tension exists between exact inference
in a simple model and approximate inference in
a complex model. The latter offers expressivity
and thus accuracy, but the former provides cover-
age of the space, an important property for con-
fidence estimation and learning with indirect su-
pervision. In this work, we introduce a new ap-
proach, reified context models, to reconcile this
tension. Specifically, we let the choice of factors
in a graphical model (the contexts) be random
variables inside the model itself. In this sense,
the contexts are reified and can be chosen in a
data-dependent way. Empirically, we show that
our approach obtains expressivity and coverage
on three sequence modeling tasks.

1. Introduction
Many structured prediction tasks across natural language
processing, computer vision, and computational biology
can be formulated as that of learning an exponential family
distribution over outputs y1:L = (y1, . . . , yL) ∈ Y1:L given
input x:

pθ(y1:L | x) ∝ exp

(
L∑
i=1

θ>φi(y1:i−1, yi, x)

)
, (1)

where φi are the features and θ are the parameters. The
thirst for expressive models (e.g., where yi depends heav-
ily on its context y1:i−1) often leads one down the route
of approximate inference, for example, to Markov chain
Monte Carlo (Brooks et al., 2011), sequential Monte Carlo
(Cappé et al., 2007), or beam search (Koehn et al., 2003).
While these methods can operate on models with arbitrary
amounts of context (φi can be any function of y1:i−1), they
use a set of concrete points to approximate the distribution
pθ, and thus they can fundamentally cover only a small part

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

r ro rol *olc

• • • • • • • • •
v ra ral ***c
y *o *ol ***r

* ** *** ****

Figure 1. In handwriting recognition, we want to output a letter at
each position. Our model also chooses a context at each position
that summarizes the outputs so far (e.g., ?olc remembers only
the last three letters) and is used for predicting the next letter.
By selecting contexts at multiple levels of resolution, our model
can place probability mass over the entire output space while still
capturing complex dependencies.

of the output space Y1:L. This inadequate coverage leads
to many issues; the two that we highlight in this paper are
the following:

• precision: In user-facing applications, it is important
to only predict on inputs where the system is confident,
leaving hard decisions to the user (Zhang et al., 2014).
Lack of coverage means failing to consider all alterna-
tive outputs, which leads to overconfidence and poor es-
timates of uncertainty.
• indirect supervision: When only part of the output y1:L

is observed, lack of coverage is even more problematic
than in the fully-supervised setting. An approximate in-
ference algorithm might not even consider the true y
(whereas one always has the true y in a fully-supervised
setting), leading to invalid parameter updates (Yu et al.,
2013).

Of course, lower-order models admit exact inference and
ensure coverage, but these models have unacceptably low
expressive power. Ideally, we would like a model that
varies the amount of context in a judicious way, allocat-
ing modeling power to parts of the input that demand it.
Therein lies the principal challenge: How can we adap-
tively choose the amount of context for each variable i in a
data-dependent way while maintaining tractability?

In this paper, we introduce a new approach, which we call
reified context models. The key idea is inspired by reifica-
tion, a general idea in logic and programming languages,
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which refers to making something previously unaccessible
(e.g., functions or metadata of functions) a “first-class cit-
izen” and therefore available (e.g., via lambda abstraction
or reflection) to formal manipulation. In our probabilistic
modeling setting, we propose reifying the contexts as ran-
dom variables in the model so that we can perform infer-
ence to choose the contexts in a data-dependent way.

Specifically, suppose we have a collection of contexts Ci for
each i ∈ {1, . . . , L − 1}. Each context c ∈ Ci is a subset
of Y1:i representing what we remember about the past (see
Figure 1 for a full example). We define a joint model over
(y, c). Suppressing x for brevity:

pθ(y1:L, c1:L−1) ∝ exp

(
L∑
i=1

θ>φi(ci−1, yi)

)
κ(y, c),

(2)
where κ is a consistency potential, to be explained later.
The features φi now depend on the current context ci−1,
rather than the full history y1:i−1. The distribution over
(y, c) factorizes according to the graphical model below:

Y1 Y2 Y3 Y4 Y5

C1 C2 C3 C4

(3)

The factorization (3) implies that the family in (2) admits
efficient exact inference via the forward-backward algo-
rithm as long as each collection Ci has small cardinality.

Adaptive selection of context sets. But how do we se-
lect the context sets Ci? First, we will show that various
static choices of Ci recover classic dynamic programming
and beam search algorithms. But ideally, we would like to
choose Ci in a data-dependent way. We propose a method,
called RCMS (Section 4), which performs a forward pass
similar to beam search to choose the most promising con-
text sets. Importantly, unlike beam search, we still obtain
coverage of the output space because we are selecting con-
texts rather than setting individual variables.

The goal of this paper is to flesh out the framework de-
scribed above, providing intuitions about its use and ex-
ploring its properties empirically. To this end, we start in
Section 2 by defining some tasks that motivate this work.
In Sections 3 and 4 we introduce reified context models
formally, together with an algorithm, RCMS, for selecting
context sets in a data-dependent way. Sections 5-7 explore
the empirical properties of the RCMS method. We discuss
future research directions in Section 9. Finally, to showcase
the ease of implementation of our method, we provide im-
plementation details and runtime comparisons in the sup-
plementary material, as well as runnable source code in our
CodaLab worksheet.

2. Description of Tasks
To better understand the motivation for our work, we
present three tasks of interest, which are also the tasks used
in our empirical evaluation later. These tasks are handwrit-
ing recognition (a fully supervised task), speech recogni-
tion (an indirectly supervised task), and decipherment (an
unsupervised task). The first of these tasks is relatively easy
while the latter two are harder. We use handwriting recog-
nition to study the precision properties of our method, and
the other two tasks to explore learning under indirect su-
pervision.

Handwriting recognition. The first task is the handwrit-
ing recognition task from Kassel (1995); we use the “clean”
version of the dataset from Weiss & Taskar (2010). This
contains 6, 876 examples, split into 10 folds (numbered 0 to
9); we used fold 1 for testing and the rest for training. Each
input is a sequence of 16 × 8 binary images; the output is
the corresponding sequence of characters. These characters
form a word without its first letter (to avoid dealing with
capitalization). Since this task ended up being too easy as
given, we downsampled each image to be 8× 4 (by taking
all pixels whose coordinates were both odd). An example
input and output is given below:

input x
output y r o j e c t i o n s

Each individual image is too noisy to interpret in isolation,
and so leveraging the context of the surrounding characters
is crucial to achieving high accuracy.

Speech recognition (decoding). Our second task is from
the Switchboard speech transcription project (Greenberg
et al., 1996). Our dataset consists of 999 utterances, split
into two chunks of sizes 746 and 253; we used the latter
chunk as a test set. Each utterance is a phonetic input and
textual output:

input x h# y ae ax s w ih r dcl d h#
latent z (alignment)
output y yeah it’s weird

Note that the alignment between the input and output is un-
observed. The average input length is 26 phonemes, or 2.5
seconds of speech. We removed most punctuation from the
output, except for spaces, apostrophes, dashes, and dots.

Decipherment. Our final task is a decipherment task
similar to that described in Nuhn & Ney (2014). In de-
cipherment, one is given a large amount of plain text and a
smaller amount of cipher text; the latter is drawn from the
same distribution as the former but is then passed through a
1-to-1 substitution cipher. For instance, the plain text sen-

https://www.codalab.org/worksheets/0x8967960a7c644492974871ee60198401/
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tence “I am what I am” might be enciphered as “13 5 54 13
5”:

latent z I am what I am
output y 13 5 54 13 5

The task is to reverse the substitution cipher, e.g. determine
that 13 7→ I , 5 7→ am, etc.

We created a dataset from the English Gigaword corpus
(Graff & Cieri, 2003) by finding the 500 most common
words and filtering for sentences that only contained those
words. This left us with 24,666 utterances, of which 2,000
were enciphered and the rest were left as plain text.

While this task is unsupervised, we can hope to gain infor-
mation about the cipher by looking at various statistics of
the plaintext and ciphertext. For instance, a very basic idea
would be to match words based on their frequency. This
alone doesn’t work very well, but by considering bigram
and trigram statistics over the latent plaintext z, we can do
much better.

3. Reified Context Models
We now formally introduce reified context models. Our
setup is structured prediction, where we want to predict an
output (y1, . . . , yL) ∈ Y1×· · ·×YL (we abbreviate this as
y1:L ∈ Y1:L) given an input x (which we elide to simplify
notation).

The central concept of our paper is that of a context. Sup-
pose we want to predict yi given y1:i−1. Informally, a con-
text ci−1 is the information that we remember about y1:i−1.
Formally, a context can be represented as a subset of the
past output history: ci−1 ⊆ Y1:i−1. Intuitively, ci−1 only
remembers that y1:i−1 ∈ ci−1.

We define a canonical context set Ci to be a collection of
subsets of Y1:i satisfying two properties:1

• coverage: Y1:i ∈ Ci
• closure: for c, c′ ∈ Ci, c ∩ c′ ∈ Ci ∪ {∅}

An example of such a context set is given in Figure 2; as in
Section 1, notation such as ??a denotes the subset of Y1:3
where y3 = a.

These conditions allow us to operate on the context in a
consistent way: After predicting yi given ci−1, we want
to be able to form ci based on ci−1 and yi alone, so that
if y1:i−1 ∈ ci−1, then y1:i ∈ ci. The coverage property
ensures that such a ci always exists: we can always take
ci = Y1:i. In reality, we would like to use the smallest
(most precise) context ci possible: Given a context ci−1 ∈

1 This is similar to the definition of a hierarchical decomposi-
tion from Steinhardt & Liang (2014), which used a more restric-
tive closure condition, namely that c ∩ c′ ∈ {c, c′, ∅}.

Figure 2. Illustration of a context set C3, where each context c ∈
C3 is a subset of Y1:3; for example, ?ba denotes Y1 ×{b}× {a}.
The contexts form a partial order (based on the subset relation).
The function f3 takes a context representing the first two letters
(e.g., bb), a new letter (e.g., c), and returns a context for the first
three letters (e.g., ?bc, which forgets the first letter).

?ba
?ca
??a

abc

?bc
???

f3(?b, a) = ?ba

f3(?a, a) = ??a

f3(bb, c) = ?bc

f3(ab, b) = ???

???

??a ?bc

?ba ?ca abc

Ci−1 and a value yi ∈ Yi, we define ci = fi(ci−1, yi) to
be the intersection of all c ∈ Ci that contain ci−1 × {yi}.
This intersection is in Ci by the closure property. Example
evaluations of fi are provided in Figure 2.

We now define a joint model over the outputs y1:L and con-
texts c1:L−1:

pθ(y1:L, c1:L−1) ∝ exp

(
L∑
i=1

θ>φi(ci−1, yi)

)
κ(y, c),

where κ(y, c) def
=
∏L−1
i=2 I[ci = fi(ci−1, yi)] enforces con-

sistency of the contexts. The distribution pθ factors accord-
ing to (3). One consequence of this is that the variables y1:L
are jointly independent given c1:L−1: the contexts capture
all the dependencies between the yi’s.

Example: 2nd-order Markov chain. To provide more
intuition, we construct a 2nd-order Markov chain using our
framework (we can construct nth-order Markov chains in
the same way). We would like Ci to “remember” the pre-
vious 2 values, i.e. (yi−1, yi). To do this, we let Ci consist
of all sets of the form Y1:i−2 × {(yi−1, yi)}; these sets fix
the value of (yi−1, yi) while allowing y1:i−2 to vary freely.
Then fi(ci−1, yi) = Y1:i−2 × {(yi−1, yi)}, which is well-
defined since yi−1 can be determined from ci−1.

If |Yi| = V , then |Ci| = V 2 (or V n for nth-order chains),
reflecting the true cost of inference in such models.

As a technical note, we also need to include Y1:i in Ci to
satisfy the coverage condition. However, Y1:i will never
actually appear as a context, as can be seen by the preced-
ing definition of fi.

To finish the construction, suppose we have a family of
2nd-order Markov chains parameterized as

pθ(y1:n) ∝ exp

(
L∑
i=1

θ>φi((yi−2, yi−1), yi)

)
. (4)

Since φi depends only on (yi−2, yi−1), which can be de-
termined from ci−1, we can define an equivalent function
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φ̃i(ci−1, yi). Doing so, we recover a model family equiva-
lent to (4) after marginalizing out c1:L−1 (since c1:L−1 is a
deterministic function of y1:L, this last step is trivial).

4. Adaptive Context Sets
The previous section showed how to define a tractable
model given a collection of canonical context sets Ci. How
do we choose these context sets? Recall the intuition from
Figures 1 and 2: We want to keep both coarse contexts
(such as ??? in Figure 2) to achieve coverage of the space as
well as much finer contexts (such as abc) to model complex
dependencies. While finer contexts expose more informa-
tion about y1:i and thus allow for more accurate modeling,
they only cover a small part of the space. Since we must
keep Ci small for tractability, we would like to choose con-
texts strategically to cover high probability regions.

We consider contexts c of the form Y1:i−n × yi−n+1:i,
which are those that remember the last n outputs. We use
a heuristic motivated by beam search. Beam search greed-
ily chooses the highest-scoring configurations y1:i based on
an estimate of their mass. We work at one higher level of
abstraction, choosing contexts instead of configurations.

To assess contexts, we define the following partial model:

qiθ(y1:i, c1:i−1) ∝ exp

 i∑
j=1

θ>φj(cj−1, yj)

 κ(y, c).

We then select context sets of inductively as follows:

• Let C̃i = {ci−1 × {yi} | ci−1 ∈ Ci−1, yi ∈ Yi}.
• Compute the mass of each element of C̃i under qiθ.
• Let Ci be the B elements of C̃i with highest mass, to-

gether with the set Y1:i.

Each element of C̃i\Ci is effectively represented by its least
ancestor in Ci. Also note that each c ∈ Ci fixes the value
of some suffix yj:i of y1:i, and allows y1:j−1 to vary freely
across Y1:j−1. Any such collection will automatically sat-
isfy the closure property.

The above procedure can be performed during the forward
pass of inference and is computationally cheap. Implemen-
tation details can be found in the supplementary material.
We call this procedure RCMS (short for “Reified Context
Model Selection”).

Caveat. While we can perform exact inference over out-
puts y1:L and contexts c1:L given the context sets C1:L, the
choice of the context sets is admittedly heuristic. While
this heuristic works well empirically, an open question is
to find a more principled approach.

4.1. Relationship to beam search

The idea of greedily selecting contexts based on qiθ is simi-
lar in spirit to beam search, an approximate inference algo-
rithm that greedily selects individual values of y1:i based
on qiθ. More formally, beam search maintains a beam
Bi ⊆ Y1:i of size B, constructed as follows:

• Let B̃i = Bi−1 × Yi.
• Compute the mass of each element of B̃i under qiθ.
• Let Bi be the B elements of B̃i with highest mass.

The similarity can be made precise: beam search is a de-
generate instance of our procedure. Given Bi, let Ci =
{{b} | b ∈ Bi} ∪ {Y1:i}. Then Ci consists of singleton sets
for each element of Bi, together with Y1:i in order to en-
sure coverage. To get back to beam search (which doesn’t
have coverage), we add an additional feature to our model:
I[ci = Y1:i]. We set the weight of this feature to −∞,
which assigns zero mass to everything outside of Bi.

Given any algorithm based on beam search, we can im-
prove it simply by allowing the weight on this additional
feature to be learned from data. This allows us to reason
about when beam search has made a search error.

4.2. Featurizations

We end this section with a recipe for choosing features
φi(ci−1, yi). We focus on n-gram and alignment features,
which are what we use in our experiments.

n-gram features. We consider nth-order Markov chains
over text, typically featurized by (n+ 1)-grams:

φi(y1:i−1, yi) =
(
I[yi−n:i = ŷ]

)
ŷ∈Yi−n:i

. (5)

To extend this to our setting, define Yi = Yi ∪ {?} and
Y1:i =

∏i
j=1 Yj . We can identify each pair (ci−1, yi) with

a sequence s = σ(ci−1, yi) ∈ Yi in the same way as be-
fore: in each position j ≤ i where yj is determined by
(ci−1, yi), sj = yj ; otherwise, sj = ?. We then define our
n-gram model on the extended space Yi−n:i:

φi(ci−1, yi) =
(
I[σ(ci−1, yi) = ŷ]

)
ŷ∈Yi−n:i

. (6)

Alignments. In the speech task from Section 2, we have
an input x1:L′ and output y1:L, where x and y have different
lengths and need to be aligned. To capture this, we add an
alignment z to the model, such as the one below:

aligned input h# y ae ax s w ih r dcl d h#
aligned output y eah it ’ s w ei r d

We represent z as a bipartite graph between {1, . . . , L} and
{1, . . . , L′} with no crossing edges, and where every node
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has degree at least one. The non-crossing condition allows
one phoneme to align to multiple characters, or one char-
acter to align to multiple phonemes, but not many-to-many
alignments. Our goal is to model pθ(y, z | x).

To featurize the alignment models, we place n-gram fea-
tures on the output yi, as well as on every group of n con-
secutive edges. In addition, the context ci′,i now tracks
the alignment of some joint prefix x1:i′ and y1:i, i.e. it
keeps track of the subgraph of z involving only those posi-
tions. Though this is no longer a chain structure, it is still
amenable to dynamic programming.

5. Generating High Precision Predictions
Recall that one symptom stemming from a lack of coverage
is poor estimates of uncertainty and the inability to generate
high precision predictions. In this section, we show that the
coverage offered by RCMS mitigates this issue compared
to beam search.

Specifically, we are interested in whether an algorithm can
find a large subset of test examples that it can classify with
high (≈ 99%) accuracy. Formally, assume a method out-
puts a prediction y with confidence p ∈ [0, 1] for each ex-
ample. We sort the examples by confidence, and see what
fraction R of examples we can answer before our accuracy
drops below a given threshold P . In this case, P is the
precision and R is the recall.

Having good recall at high levels of precision (e.g., P =
0.99) is useful in applications where we need to pass on
predictions below the precision threshold for a human to
verify, but where we would still like to classify as many
examples as possible automatically.

We ran an experiment on the handwriting recognition
dataset described in Section 2. We used a 4-gram model,
training both beam search (with a beam size of 10) and
RCMS (with 10 contexts per position, not counting Y1:i).
In addition, we used beam search with a beam size of 200
as a surrogate for exact inference. To train the models, we
maximized the approximate log-likelihood using AdaGrad
(Duchi et al., 2010) with a step size η = 0.2 and δ = 10−4.

The precision-recall curve for each method is plotted in
Figure 3; confidence is the probability the model assigns
to the predicted output. Note that while beam search and
RCMS achieve similar accuracies (precision at R = 1) on
the full test set (87.1% and 88.5%, respectively), RCMS
is much better at separating out examples that are likely to
be correct. The flat region in the precision-recall curve for
beam search means that the model confidence and actual
error probability are unrelated across that region.

This shows that beam search has a precision ceiling, where
it is simply impossible to obtain high precision at any rea-

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.80

0.85

0.90

0.95

1.00

pr
ec

is
io

n

Beam search (10)
RCMS (10)
"Exact" inference

Figure 3. On handwriting recognition, precision-recall curve of
beam search with beam size 10, RCMS with 10 contexts per po-
sition, and almost-exact inference simulated by beam search with
a beam of size 200. Beam search makes errors even on its most
confident predictions, while RCMS is able to separate out a large
number of nearly error-free predictions.

sonable level of recall. To quantify this effect, note that the
recall at 99% precision for beam search is only 16%, while
for RCMS it is 82%. For comparison, the recall for exact
inference is only 4% higher (86%). Therefore, RCMS is
nearly as effective as exact inference on this metric while
requiring substantially fewer computational resources.

6. Learning with Indirect Supervision
The second symptom of lack of coverage is the inabil-
ity to learn from indirect supervision. In this setting,
we have an exponential family model pθ(y, z | x) ∝
exp(θ>φ(x, y, z)), where x and y are observed during
training but z is unobserved. The gradient of the (marginal)
log-likelihood is:

∇ log pθ(y | x) = Eẑ∼pθ(z|x,y) [φ(x, y, ẑ)] (7)
− Eŷ,ẑ∼pθ(y,z|x) [φ(x, ŷ, ẑ)] ,

which is the difference between the expected features with
respect to the target distribution pθ(z | x, y) and the model
distribution pθ(y, z | x). In the fully supervised case,
where we observe z, the target term is simply φ(x, y, z),
which provides a clear training signal without any infer-
ence. With indirect supervision, even obtaining a training
signal requires inference with respect to pθ(z | x, y), which
is generally intractable.

In the context of beam search, there are several strategies
to inferring z for computing gradients:

• Select-by-model: select beams based on qiθ(z |x), then
re-weight at the end by pθ(y | z, x). This only works if
the weights are high for at least some “easy” examples,
from which learning can then bootstrap.



Reified Context Models

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
training passes

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
ch

ar
ac

te
r e

rr
or

 ra
te

model
target
hybrid
forced decoding

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
training passes

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

ch
ar

ac
te

r e
rr

or
 ra

te

RCMS
forced decoding

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
training passes

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

ex
ac

t m
at

ch
 a

cc
ur

ac
y

RCMS
forced decoding

Figure 4. Left: character error rate (CER) of all beam search-based methods on the speech task, for 5 passes of the training data; note
that an empty output always has a CER of 1.0. Middle: CER of forced decoding and RCMS over 5 random permutations of the data;
the solid line is the median. Right: exact-match accuracy over the same 5 permutations.

• Select-by-target: select beams based on qiθ(z | x, y).
Since y is not available at test time, parameters θ learned
conditioned on y do not generalize well.
• Hybrid: take the union of beams based on both the

model and target distributions.
• Forced decoding (Gorman et al., 2011): first train a

simple model for which exact inference is tractable to
infer the most likely z, conditioned on x and y. Then
simply clamp z; this then becomes a fully-supervised
problem.

To understand the behavior of these methods, we used them
all to train a model on the speech recognition dataset from
Section 2. The model places 5-gram indicator features on
the output as well as on the alignments. We trained using
AdaGrad with step size η = 0.2 and δ = 10−4. For each
method, we set the beam size to 20. For forced decoding,
we used a bigram model with exact inference to impute z.

The results are shown in Figure 4(a). Select-by-model
doesn’t learn at all: it only finds valid alignments for 2 out
of the 746 training examples; for the rest, pθ(y | z, x) is
zero for all alignments considered, thus providing no signal
for learning. Select-by-target quickly reaches high train-
ing accuracy, but generalizes extremely poorly because it
doesn’t learn to keep the right answer on the beam. The
hybrid approach does better but still not very well. The
only method that learns effectively is forced decoding.

While forced decoding works well, it relies on the idea that
a simple model can effectively determine z given access to
x and y. This will not always be the case, so we would like
methods that work well even without such a model. Reified
context models provide a natural way of doing this: we
simply compute pθ(z | x, y) under the contexts selected by
RCMS, and perform learning updates in the natural way.

To test RCMS, we trained it in the same way using 20 con-
texts per position. Without any need for special initializa-
tion, we obtain a model whose test accuracy is better than

that of forced decoding (see Figures 4(b),4(c)).

Decipherment: Unsupervised Learning. We now turn
our attention to an unsupervised problem: the decipher-
ment task from Section 2. We model decipherment as a hid-
den Markov model (HMM): the hidden plain text evolves
according to an n-th order Markov chain, and the cipher
text is emitted based on a deterministic but unknown 1:1
substitution cipher (Ravi & Knight, 2011).

Of the baseline method described above, only select-by-
model can run in the absence of supervision. We there-
fore compare only three methods: select-by-model (beam
search), RCMS, and exact inference. We trained a 1st-
order (bigram) HMM using all 3 methods, and a 2nd-order
(trigram) HMM using only beam search and RCMS, as ex-
act inference was too slow (the vocabulary size is 500). We
used the given plain text to learn the transition probabilities,
using absolute discounting (Ney et al., 1994) for smooth-
ing. Then, we used EM to learn the emission probabilities;
we used Laplace smoothing for these updates.

The results are shown in Figure 5. We evaluated using map-
ping accuracy: the fraction of unique symbols that are cor-
rectly mapped (Nuhn et al., 2013). First, we compared the
overall accuracy of all methods, setting the beam size and
context size both to 60. We see that all 2nd-order mod-
els outperform all 1st-order models, and that beam search
barely learns at all for the 1st-order model.

Restricting attention to 2nd-order models, we measure the
effect of beam size and context size on accuracy, plotting
learning curves for sizes of 10, 20, 30, and 60. In all cases,
RCMS learns more quickly and converges to a more accu-
rate solution than beam search. The shapes of the learning
curves are also different: RCMS learns quickly after a few
initial iterations, while beam search slowly accrues infor-
mation at a roughly constant rate over time.
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Figure 5. Results on the decipherment task. Left: accuracy for a fixed beam/context size as the model order varies; approximate inference
with a 2nd-order HMM using RCMS outperforms both beam search in the same model and exact inference in a simpler model. Right:
effect of beam/context size on accuracy for the 2nd-order HMM. RCMS is much more robust to changes in beam/context size.

7. Refinement of Contexts During Training
When learning with indirect supervision and approximate
inference, one intuition is that we can “bootstrap” by first
learning from easy examples, and then using the informa-
tion gained from these examples to make better inferences
about the remaining ones (Liang et al., 2011). However,
this can fail if there are insufficiently many easy examples
(as in the speech task), if the examples are hard to identify,
or if they differ statistically from the remaining examples.

We think of the above as “vertical bootstrapping”: using the
full model on an increasing number of examples. RCMS
instead performs “horizontal bootstrapping”: for each ex-
ample, it selects a model (via the context sets) based on the
information available. As training progresses, we expect
these contexts to become increasingly fine as the parame-
ters improve.

To measure this quantitatively, we define the length of a
context ci−1 to be the number of positions of y1:i−1 that
can be determined from ci−1 (number of non-?’s). We plot
the average length (weighted by mass under qiθ) as training
progresses. The averages are updated every 50 and 100
training examples respectively for handwriting and speech
recognition. For decipherment, they are computed once for
each EM update (i.e., for each full pass over the training
data).

Figure 6 shows that the broad trend is an increase in the
context length over time. For both the handwriting and
speech tasks, there is an initial overshoot at the beginning;
this is because the handwriting and speech tasks are trained
with stochastic gradient methods, which often overshoot
(in contrast, for decipherment, we use the more stable EM
algorithm).

Since we start by using coarse contexts and move to finer

contexts by the end of training, RCMS can be thought of
as a coarse-to-fine training procedure (Petrov et al., 2006).
However, instead of using a sequence of pre-defined, dis-
crete models, we organically adapt the amount of context
on a per-example basis.

8. Related work
Kulesza & Pereira (2007) studied the interaction between
approximate inference and learning, showing that even in
the fully supervised case, approximate inference can be
seriously detrimental. Finley & Joachims (2008) show
that approximate inference algorithms which over-generate
possible outputs interact best with learning; this further
supports the need for coverage when learning.

Four major approaches have been taken to address the prob-
lem of learning with inexact inference. The first modifies
the learning updates to account for the inference procedure,
as in the max-violation perceptron and related algorithms
(Huang et al., 2012; Zhang et al., 2013; Yu et al., 2013);
a related idea is to view approximate inference as part of
the model, either by reinforcement learning (Daume et al.,
2009; Shi et al., 2015) or by propagating the approxima-
tions through the gradient updates (Barbu, 2009; Domke,
2011; Stoyanov et al., 2011; Steinhardt & Liang, 2015).

A second approach modifies the inference algorithm to ob-
tain better coverage, as in coarse-to-fine inference (Petrov
et al., 2006; Weiss et al., 2010), where simple models are
used to direct the focus of more complex models. Pal et al.
(2006) encourage coverage for beam search by adaptively
increasing the beam size. A third approach is to use infer-
ence procedures with certificates of optimality, based on
either duality gaps (Sontag, 2010) or variational bounds
(Xing et al., 2002; Wainwright et al., 2005).
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Figure 6. Average context length vs. number of learning updates for the handwriting recognition, speech recognition, and decipherment
tasks. For handwriting and speech recognition we take a cumulative average (to reduce noise).

Finally, one can learn a model that is tractable. While
classical tractable model families based on low treewidth
are often insufficiently expressive, more modern families
have shown promise; for instance, sum-product networks
(Poon & Domingos, 2011), exchangeable variable models
(Niepert & Domingos, 2014), and mean-field networks (Li
& Zemel, 2014).

Our method RCMS also attempts to define tractable model
families, in our case, via a parsimonious choice of latent
context variables, even though the actual distribution over
y1:L may have arbitrarily high treewidth. We adaptively
choose the model structure for each example at “run-time”,
which distinguishes our approach from the aforementioned
methods (though sum-product networks have some capac-
ity for expressing adaptivity implicitly).

Certain smoothing techniques in natural language process-
ing also interpolate between contexts of different order,
such as absolute discounting (Ney et al., 1994) and Kneser-
Ney smoothing (Kneser & Ney, 1995). However, in such
cases all observed contexts are used in the model; to get
the same tractability gains as we do, it would be necessary
to adaptively sparsify the model for each example at run-
time. Some Bayesian nonparametric approaches such as
infinite contingent Bayesian networks (Milch et al., 2005)
and hierarchical Pitman-Yor processes (Teh, 2006; Wood
et al., 2009) also reason about contexts. Our model is also
similar to the variable-length Markov chains of Bühlmann
& Wyner (1999). In a different vein, some work focuses
on controlling the factors present in a model, similar to
our selection of contexts; this includes tightening relax-
ations (Riedel & Smith, 2010; Sontag et al., 2008) as well
as evidence-specific MRFs (Stoyanov & Eisner, 2012).

9. Discussion
We have presented a new framework, reified context mod-
els, that reifies context as a random variable, thereby defin-
ing a family of expressive but tractable probability distri-
butions. By adaptively choosing context sets per-example,
our RCMS method is able to use short contexts in regions

of high uncertainty and long contexts in regions of low un-
certainty, thereby reproducing the behavior of coarse-to-
fine training methods in a more organic and fine-grained
manner. In addition, because RCMS maintains full cov-
erage of the space, it is able to break through the preci-
sion ceiling faced by beam search. Coverage also helps
with training under indirect supervision, since we can bet-
ter identify settings of latent variables that assign high like-
lihood to the data.

At a high level, our method provides a framework for struc-
turing inference around contexts; because the contexts are
reified in the model, we can also support queries about how
much mass lies in each context. These two properties to-
gether open up intriguing possibilities. For instance, we
could use small context sets for each location and add finer
contexts at locations where there is high uncertainty.

Another direction is to extend our construction beyond se-
quences. In principle, we can use any collection of contexts
that induce a graphical model with low treewidth, rather
than only considering the chain structure in (3). For prob-
lems such as image segmentation where the natural struc-
ture is a grid, such extensions may be necessary.

Finally, while we currently learn how much weight to as-
sign to each context, we could go one step further and learn
which contexts to propose and include in the context sets Ci
(rather than relying on a fixed procedure as in the RCMS
algorithm). Ideally, one could specify a large number of
possible strategies for building context sets, and the best
strategy to use for a given example would be learned from
data. This would move us one step closer to being able
to employ arbitrarily expressive models with the assurance
of an automatic inference procedure that can reliably take
advantage of this expressivity.

Reproducibility. The code, data, and the experi-
ments for this paper are available on CodaLab at
https://www.codalab.org/worksheets/
0x8967960a7c644492974871ee60198401/.

https://www.codalab.org/worksheets/0x8967960a7c644492974871ee60198401/
https://www.codalab.org/worksheets/0x8967960a7c644492974871ee60198401/
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A. Implementation Details
Recall that to implement the RCMS method, we need to
perform the following steps:

1. Let C̃i = {ci−1 × {yi} | ci−1 ∈ Ci−1, yi ∈ Yi}.

2. Compute what the mass of each element of C̃i would
be if we used qiθ as the model and C̃i as the collection
of contexts.

3. Let Ci be the B elements of C̃i with highest mass, to-
gether with the set Y1:i.

As in Section 4, each context in Ci can be represented by a
string s1:i, where sj ∈ Yj ∪ {?}. We will also assume an
arbitrary ordering on Yj ∪ {?} that has ? as its maximum
element.

In addition, we use two datatypes: E (for “expand”), which
keeps track of elements of C̃i, and M (for “merge”), which keeps
track of elements of Ci. More precisely, if ci−1 is represented
by an object mi−1 of type M, then E(mi−1, yi) represents ci−1×
{yi}; and M(E(mi−1, yi)) represents ci−1×{yi} as well, with the
distinction that it is a member of Ci rather than C̃i. The distinction
is important because we will also want to merge smaller contexts
into objects of type M. For both E and M objects, we maintain a
field len, which is the length of the suffix of y1:i that is specified
(e.g., if an object represents Y1:3 × {y4:5}, then its len is 2).

Throughout our algorithm, we will maintain 2 invariants:

• C̃i and Ci will be sorted lexicographically (e.g. based first
on si, then si−1, etc.)

• A list l̃csi of length len(C̃i) is maintained, such
that the longest common suffix of C̃i[a] and C̃i[b] is
minc∈[a,b) l̃csi[c]. A similar list lcsi is maintained for Ci.

Step 1. To perform step 1 above, we just
do:
C̃i = []
for j = 0 to len(Yi)− 1 do

for k = 0 to len(Ci−1)− 1 do
if k + 1 < len(Ci−1) then

l̃csi.append(lcsi−1[k] + 1)
else

l̃csi.append(0)
end if
C̃i.append(E(Ci[k], Yi[j]))

end for
end for

The important observation is that if two sequences end in the same
character, their lcs is one greater than the lcs of the remaining se-
quence without that character; and if they end in different charac-
ters, their lcs is 0.

Each E keeps track of a forward score, defined as

E(m, y).forward = m.forward× exp(θ>φ(m, y)). (8)

Step 2. For step 2, we find the B elements c̃ of C̃i with the
largest forward score; we set a flag c̃.active to true for each such
c̃.

Step 3. Step 3 contains the main algorithm challenge, which is
to efficiently merge each element of C̃i into its least ancestor in Ci.
If we think of Ci as a tree (as in Figure 2), we can do this by essen-
tially performing a depth-first-search of the tree. The DFS goes
backwards in the lexicographic ordering, so we need to reverse
the lists Ci and lcsi at the end.
� merge and update lcs
stack = []
Ci = []
lcsi = []
l←∞
for j = len(C̃i)− 1 to 0 do
l← min(l, l̃csi[j])
while l < stack[−1]. len do
� then current top of stack is not an ancestor of C̃i[j]
stack.pop()

end while
if C̃i[j].active then
m = M(C̃i[j])
lcsi.append(l)
Ci.append(m)
stack.push(m)
l←∞

else
� merge C̃i[j] into its least ancestor
stack[−1]. absorb(C̃i[j])

end if
end for
lcsi.reverse()
Ci.reverse()

If m ∈ Ci has absorbed elements e1, . . . , ek, then we compute
m.forward as

∑k
j=1 ej .forward.

After we have constructed C1, . . . , Ci−1, we also need to send
backward messages for inference. If e ∈ C̃i is merged into
m ∈ Ci, then e.backward = m. backward. If m ∈ Ci
expands to E(m, y) for y ∈ Yi+1, then m. backward =∑

y∈Yi+1
E(m, y).backward× exp(θ>φ(m, y)). The (un-

normalized) probability mass of an object is then simply the prod-
uct of its forward and backward scores; we can compute the nor-
malization constant by summing over Ci.

In summary, our method can be coded in three steps; first, during
the forward pass of inference, we:

1. Expand to C̃i and construct l̃csi.

2. Sort by forward score and mark active nodes in C̃i for inclu-
sion in Ci.

3. Merge each node in C̃i into its least ancestor in Ci, using a
depth-first-search.

Finally, once all of the Ci are constructed, we perform the back-
ward pass:

4. Propagate backward messages and compute the normaliza-
tion constant.
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B. Further Details of Experimental Setup
We include here a few experimental details that did not fit
into the main text. When training with AdaGrad, we per-
formed several stochastic gradient updates in parallel, sim-
ilar to the approach described in Recht et al. (2011) (al-
though we parallelized even more aggressively at the ex-
pense of theoretical guarantees). We also used a random-
ized truncation scheme to round most small coordinates of
the gradients to zero, which substantially reduces memory
usage as well as concurrency overhead.

For decipherment, we used absolute discounting with dis-
count 0.25 and smoothing 0.01, and Laplace smoothing
with parameter 0.01. For the 1st-order model, beam search
performs better if we use Laplace smoothing instead of ab-
solute discounting (though still worse than RCMS). In or-
der to maintain a uniform experimental setup, we excluded
this result from the main text.

For the hybrid selection algorithm in the speech experi-
ments, we take the union of the beams at every step (as op-
posed to computing two sets of beams separately and then
taking a single union at the end).

C. Runtime
Asymptotically, both RCMS and beam search have the
same runtime: given a beam size b and alphabet size s,
beam search and RCMS both run in time O (bs log(bs))
at each position yi, and require O (bs) feature extractions.
However, in general the constant factor for RCMS will be
larger, and in this section we characterize this more pre-
cisely.

First, we make the caveat that the relative speed of RCMS
versus beam search is sensitive to many factors, including
the time required for feature extraction and model evalua-
tion, and how much one is willing to trade off runtime for
memory.

With this caveat in mind, we obtained a rough runtime com-
parison by recording the runtime of both RCMS and beam
search on the decipherment task, and attempted to optimize
both methods to about the same degree. In this case, RCMS
was approximately 2 to 3 times slower than beam search.

The main factors causing RCMS to be slower are the more
complicated merging step (which requires the LCS data
structure described in Appendix A) as well as the backward
pass, which requires recomputing all of the features if they
were not cached. Also, the gradient updates are denser than
beam search, by a factor of L (the length of y).

In cases where feature extraction is the dominant cost, and
assuming that features are cached for the backwards pass,
the runtimes of RCMS and beam search should be similar.

D. Additional Files
In the supplementary material, we also include the source
code and datasets for the decipherment task. A README is
included to explain how to run these experiments.

In addition, a fully runnable version of all the exper-
iments (including data, source code, dependencies,
and run commands) can be found on CodaLab, at
https://www.codalab.org/worksheets/
0x8967960a7c644492974871ee60198401/.

https://www.codalab.org/worksheets/0x8967960a7c644492974871ee60198401/
https://www.codalab.org/worksheets/0x8967960a7c644492974871ee60198401/

