Structured Prediction Energy Networks

A. Appendix

A.1. Analysis of Convergence Behavior
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Figure 2. Histogram of #required iters for each example in a large
batch to converge. Unnecessary computation is performed on
already-converged examples while waiting for the final ones to
converge.
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Figure 3. Accuracy vs. # required iters for varying convergence
percentage. Optimization on a batch is terminated if X% of the
examples in the batch have converged. This provides little de-
crease in accuracy, while providing an impressive speedup. We
hypothesize that the many of the slow-converging examples were
ones for which prediction was going to be incorrect anyway, so it
is ok to terminate these early.

o™ oo o o

0.4 ”
0.35 o
03
)
So2s
5
g 02
8
0.15
0.1
0.05/ @
0

10 20 30 40 50 60
iterations

Figure 4. Accuracy vs. # required iters curve for varying conver-
gence tolerance. By using a looseer convergence tolerance, we
can sacrifice accuracy for speed.

A.2. SPEN Architecture for Multi-Label Classification

A.3. Deep Mean Field Predictor

Consider a fully-connected pairwise CRF for multi-label
prediction. We have:

P(ylz) ocexp [ S BE (yiyy) + > U i) | (10)
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Here, the dependence of the pairwise and unary potential
functions B and U on z is arbitrary and we leave this de-
pendence implicit going forward. There are 4 possible val-
ues for B;;, dependin g on the values of y; and y;. Simi-
larly, there are two possible values for U;. Suppose that y is
represented as a vector in {0, 1}, then we can re-write (12)
as

P(ylz) ccexp(y Ayy+ (1 —y) " Ay (11)
+(1—y)TAs(1—y)+Cly+Cy (1—y)) (12)

Here, A1,A-, and A3 are matrices and C; and C5 are vec-
tors. Collecting terms, we obtain a matrix A and vector C'
such that

P(y|z) < exp (y" Ay + C "y + constant)
ie
P(ylz) o<cexp (y " Ay + CTy) (13)

We seek to perform mean-field variational inference in this
CRF. Let 4 € [0, 1]* be the estimate for the marginals of
y at timestep t. Define 7}, to be a vector that is equa 1
to ¢ everywhere but coordinate ¢, where it is 0 (ie we’re
conditioning the value of the ith label to be 0). Similarly,
define gjﬁ’l The mean-field updates set

Y+l exp(ezl)
exp(e;) + exp(e})

U = Sigmoid(e} —¢€Y), (14)
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Algorithm 1 Vectorized Mean-Field Inference for Fully-
Connected Pairwise CRF for Multi-Label Classification
Input: x, m
A, C' + GetPotentials(z)
Initialize  uniformly as [0.5] %
D «+ diag(A)
fort =1tomdo
E+— Ay—D+C
¥ < Sigmoid(E)
end for

where:

e = (?f,l)TA?ng + Ongt’,l
and

ef = (Who) Ayl + CT .
Define s; = 3, A;;5'. Many terms in e} — ef
We’re left with

cancel.

1.0 _
e; — € =8+ Ci.

A vectorized form of the mean-field updates is presented in
Algorithm 1.

A.4. Details for Improving Efficiency and Accuracy of
SPENs

Various tricks of the trade from the deep learning litera-
ture, such as momentum, can be applied to improve the
prediction-time optimization performance of our entropic
mirror descent approach described in Section 2, which
are particularly important because F, () is generally non-
convex.

We perform inference in minibatches in parallel on GPUs.

When ‘soft’ predictions are useful, it can be useful to aug-
ment F, (y) with an extra term for the entropy of g. This
can be handled at essentially no computational cost, by
simply normalizing the iterates in entropic mirror descent
at a certain ‘temperature.’” This is only done at test time,
not in the inner loop of learning.

Typically, backpropagation computes the gradient of output
with respect to the input and also computes the gradient of
the output with respect to any parameters of the network.
For us, however, we only care about gradients with respect
to the inputs ¢ during inference. Therefore, we can obtain
a considerable speedup by avoiding computation of the pa-
rameter gradients.

We train the local energy network first, using a local label-
wise prediction loss. Then, we clamp the parameters of the
local energy network and train the global energy network.
Finally, we perform an additional pass of training, where
all parameters are updated using a small learning rate.

#labels | #features | # train | % true labels
Bibtex 159 1836 4880 2.40
Delicious 983 500 12920 19.02
Bookmarks 208 2150 60000 2.03
Yeast 14 103 2417 30.3

Table 4. Properties of the datasets.
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Figure 5. Structure learning on synthetic task using 10% of the
data. The measurement matrix still recovers interactions between
the labels characteristic of the data generating process

A.5. Hyperparameters

For prediction, both at test time and in the inner loop of
learning, we ran gradient descent with momentum = 0.95,
a learning rate of 0.1, and no learning rate decay. We ter-
minated prediction when either the relative change in the
objective was below a tolerance or the [/, change between
iterates was below an absolute tolerance.

For training, we used sgd with momentum 0.9 with learning
rate and learning rate decay tuned on development data. We
use 12 regularization both when pre-training the features
and net and during SSVM training, with 12 weights tuned
on development data.

We did not tune the sizes of the hidden layers for the feature
network. These were set based on intuition and the size of
the data, the number of training examples, etc.




