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Appendix
A. Proof of Theorem 3: Convergence of SALSA
Our analysis here is a brute force generalisation of the analysis in Zhang et al. (2013). We handle the additive case using
ideas from Aronszajn (1950). As such we will try and stick to the same notation. Some intermediate technical results can
be obtained directly from Zhang et al. (2013) but we repeat them (or provide an outline) here for the sake of completeness.

In addition to the definitions presented in the main text, we will also need the following quantities,

β
(j)
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∞∑
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µ
(j)
` , Ψ(j) =

∞∑
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µ
(j)
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Here Ψ(j) is the trace of k(j). β(j)
t depends on some t ∈ N which we will pick later. Also define βt =

∑
j β

(j)
t and

Ψ =
∑
j Ψ(j).

Note that the excess risk can be decomposed into bias and variance terms,R(f̂)−R(f∗) = E[‖f̂−f∗‖22] = ‖f∗−Ef̂‖22 +

E[‖f̂ − Ef̂‖22]. In Sections A.2 and A.3 respectively, we will prove the following bounds which will yield in Theorem 3:
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Accordingly, this gives the following expression for χ(k),

χ(k) = inf
t

[
8Md

3/2ρ4‖f∗‖2F
λ

Ψβt +

(
2σ2

λ
+ 4‖f∗‖2F + 1

)(
CMdb(n, t, q)ρ

2γk(λ)√
n

)q
‖f∗‖22

)
+

(
2σ2

λ
+ 4‖f∗‖2F

)( Md∑
j=1

µ
(j)
t+1 +

12Mdρ
4

λ
Ψβt

)
+ ‖f∗‖2F

Md∑
j=1

µ
(j)
t+1

]
. (11)

Note that the second term in χ(k) is usually low order for large enough q due to the n−q/2 term. Therefore if in our setting
β

(j)
t and µ(j)

t+1 are small enough, χ(k) is low order. We show this for the two kernel choices of Theorem 4 in Appendix B.

First, we review some well known results on RKHS’s which we will use in our analysis. Let κ be a PSD kernel andHκ be
its RKHS. Then κ acts as the representer of evaluation – i.e. for any f ∈ Hκ, 〈f, κ(·, x)〉Hκ = f(x). Denote the RKHS

norm ‖f‖Hκ =
√
〈f, f〉Hκ and the L2 norm ‖f‖2 =

√∫
f2.

Let the kernel κ have an eigenexpansion κ(x, x′) =
∑∞
`=1 µ`φ`(x)φ`(x

′). Denote the basis coefficients of f in {φ`} via
{θ`}. That is, θ` =

∫
f · φ` dP and f =

∑∞
`=1 θ`φ`. The following results are well known (Schölkopf & Smola, 2001;

Steinwart & Christmann, 2008),

〈φ`, φ`〉 = 1/µ`, ‖f‖22 =

∞∑
`=1

θ2
` , ‖f‖2Hκ =

∞∑
`=1

θ2
`

µ`
.

Before we proceed, we make the following remark on the minimiser of (3).

Remark 6. The solution of (3) takes the form f̂(·) =
∑n
i=1 αik(·, Xi) where k is the sum kernel (4).
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Proof. The key observation is that we only need to consider n (and not nMd) parameters even though we are optimising
overMd RKHSs. The reasoning uses a powerful result from Aronszajn (1950). Consider the class of functionsH′ = {f =∑
j f

(j); f (j) ∈ Hk(j)}. In (3) we are minimising over H′. Any f ∈ H′ need not have a unique additive decomposition.
ConsiderH ⊂ H′ which only contains the minimisers in the expression below.

‖f‖2H = inf
g(j)∈H

k(j)
;f=

∑
g(j)

M∑
j=1

‖g(j)‖2H
k(j)

Aronszajn (1950) showed that H is an RKHS with the sum kernel k =
∑
j k

(j) and its RKHS norm is ‖ · ‖H. Clearly, the
minimiser of (3) lies in H. For any g′ ∈ H′, we can pick a corresponding g ∈ H with the same sum of squared errors (as
g = g′) but lower complexity penalty (as g minimises the sum of norms for any g′ = g). Therefore, we may optimise (3)
just overH and notH′. An application of Mercer’s theorem concludes the proof.

A.1. Set up

We first define the following function class of the product of all RKHS’s, F = Hk(1) × Hk(2) × · · · × Hk(Md) ={
f = (f (1), . . . , f (Md))

∣∣f (j) ∈ Hk(j) ∀j
}

and equip it with the inner product 〈f1, f2〉 = 〈f (1)
1 , f

(1)
2 〉Hk(1) + · · · +

〈f (Md)
1 , f

(Md)
2 〉H

k(Md)
. Here, f (j)

1 are the elements of f1 and 〈·, ·〉H
k(j)

is the RKHS inner product of Hk(j) . Therefore

the norm is ‖f‖2F =
∑Md

j=1 ‖f (j)‖2H
k(j)

. Denote ξ(j)
x = k(j)(x, ·) and ξx(·) = K(·, x). Observe that for an additive

function f =
∑
j f

(j)(x),

f(x) =
∑
j

f (j)(x) =
∑
j

〈f (j), ξ(j)
x 〉Hk(j) = 〈f , ξx〉.

Recall that the solution to (3) is denoted by f̂ and the individual functions of the solution are given by f̂ (j). We will
also use f∗ and f̂ to denote the representations of f∗ and f̂ in F , i.e., f∗ = (f

(1)
∗ , . . . , f

(Md)
∗ ) and f̂ = (f̂ (1), . . . , f̂ (Md)).

Note that ‖f∗‖2F is precisely the bound used in Theorem 3. We will also denote ∆(j) = f̂ (j) − f
(j)
∗ ∈ Hk(j) , ∆ =

(∆(1), . . . ,∆(Md)) ∈ F , and ∆ =
∑
j ∆(j) = f̂ − f∗.

For brevity, from now on we will write k(j)(x, x′) instead of k(j)(x(j), x(j)′). Further, since d is fixed in this analysis we
will write M for Md.

A.2. Bias (Proof of Bound (9))

Note that we need to bound ‖E[∆]‖2 which by Jensen’s inequality is less than E[‖E[∆|Xn
1 ]‖2]. Since, ‖E[∆|Xn

1 ]‖22 ≤
M
∑M
j=1 ‖E[∆(j)|Xn

1 ]‖22, we will focus on bounding
∑M
j=1 ‖E[∆(j)|Xn

1 ]‖22.

We can write the optimisation objective (3) as follows,

f̂ = argmin
f∈F

1

n

n∑
i=1

(〈f , ξXi〉 − Yi)
2

+ λ‖f‖2F (12)

Since this is Fréchet differentiable in F in the metric induced by the inner product defined above, the first order optimality
conditions for f̂ (j) give us,

1

n

n∑
i=1

(
〈ξXi , f̂ − f∗〉 − εi

)
ξ

(j)
Xi

+ 2λf̂ (j) = 0.

Here, we have taken Yi = f∗(Xi) + εi where E[εi|Xi] = 0. Doing this for all f̂ (j) we have,

1

n

n∑
i=1

ξXi (〈ξXi ,∆〉 − εi) + λf̂ = 0 (13)

Taking expectations conditioned on Xn
1 and rearranging we get,

(Σ̂ + λI)E[∆|Xn
1 ] = −λf∗, (14)
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where Σ̂ = 1
n

∑
i ξXi ⊗ ξXi is the empirical covariance. Since Σ̂ � 0,

∀j′, ‖E[∆(j′)|Xn
1 ]‖2H

k(j
′)
≤

M∑
j=1

‖E[∆(j)|Xn
1 ]‖2H

k(j)
= ‖E[∆|Xn

1 ]‖2F ≤ ‖f∗‖2F (15)

Let E[∆(j)|Xn
1 ] =

∑∞
`=1 δ

(j)
` φ

(j)
` where φ

(j)
` are the eigenfunctions in the expansion of k(j). Denote δ

(j)
↓ =

(δ
(j)
1 , . . . , δ

(j)
t ) and δ(j)

↑ = (δ
(j)
t+1, δ

(j)
t+2, . . . ). We will set t later. Since ‖E[∆(j)|Xn

1 ]‖22 = ‖δ(j)
↓ ‖22 + ‖δ(j)

↑ ‖22 we will
bound the two terms. The latter term is straightforward,

‖δ(j)
↑ ‖

2
2 ≤ µ

(j)
t+1
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δ
(j)
`

2

µ
(j)
`
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k(j)
≤ µ(j)

t+1‖f∗‖2F (16)

To control ‖δ(j)
↓ ‖, let f (j)

∗ =
∑
` θ

(j)
` φ

(j)
` . Also, define the following: θ(j)

↓ = (θ
(j)
1 , . . . , θ

(j)
t ), Φ(j) ∈ Rn×t, Φ

(j)
i` =

φ
(j)
` (Xi), Φ

(j)
` = (φ

(j)
` (X1), . . . , φ

(j)
` (Xn)) ∈ Rn, M(j) = diag(µ

(j)
1 , . . . , µ

(j)
t ) ∈ Rt×t+ and v(j) ∈ Rn where v(j)

i =∑
`>t δ

(j)
` φ

(j)
` (Xi) = E[∆

(j)
↑ (Xi)|Xn

1 ].

Further define, Φ = [Φ(1) . . .Φ(M)] ∈ Rn×tM , M = diag(M(1), . . . ,M(M)) ∈ RtM×tM , vi =
∑
j v

(j), δ↓ =

[δ
(1)
↓ ; . . . ; δ

(M)
↓ ] ∈ RtM and θ↓ = [θ

(1)
↓ ; . . . ; θ

(M)
↓ ] ∈ RtM .

Now compute the F-inner product between (0, . . . , φ
(j)
` , . . . ,0) with equation (14) to obtain,

1

n

n∑
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〈φ(j)
` , ξ

(j)
Xi
〉H

k(j)
〈ξXi ,E[∆|Xn

1 ]〉+ λ〈φ(j)
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(j)
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1

n

n∑
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φ
(j)
` (Xi)

M∑
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∑
`′≤t

φ
(j)
`′ (Xi)δ

(j)
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∑
`′>t

φ
(j)
`′ (Xi)δ

(j)
`′

+ λ
δ

(j)
`

µ
(j)
`
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θ

(j)
`

µ
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`

After repeating this for all j and for all ` = 1, . . . , t, and arranging the terms appropriately this reduces to(
1

n
Φ>Φ + λM−1

)
δ↓ = −λM−1θ↓ −

1

n
Φ>v

By writing Q = (I + λM−1)1/2, we can rewrite the above expression as(
I +Q−1

(
1

n
Φ>Φ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ −

1

n
Q−1Φ>v.

We will need the following technical lemmas. The proofs are given at the end of this section. These results correspond to
Lemma 5 in Zhang et al. (2013).

Lemma 7. ‖λQ−1M−1θ↓‖22 ≤ λ‖f∗‖2F .

Lemma 8. E
[
‖ 1
nQ
−1Φ>v‖22

]
≤ 1

λM
3/2ρ4‖f∗‖2FΨβt.

Lemma 9. Define the event E = {‖Q−1( 1
nΦ>Φ− I)Q−1‖op ≤ 1/2}. Then, there exists a constant C s.t.

P(Ec) ≤
(

max

(√
max(q, log t) ,

max(q, log t)

n1/2−1/q

)
× MCρ2γk(λ)√

n

)q
.
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When E holds, by Lemma 9 and noting that Q � I ,

‖δ↓‖22 ≤ ‖Qδ↓‖22 =
∥∥∥(I +Q−1

(
1

n
Φ>Φ− I

)
Q−1

)−1(
−λQ−1M−1θ↓ −

1

n
Q−1Φ>v

)∥∥∥2

≤ 4‖λQ−1M−1θ↓ +
1

n
Q−1Φ>v‖22. ≤ 8‖λQ−1M−1θ↓‖22 + 8‖ 1

n
Q−1Φ>v‖22

Now using Lemmas 7 and 8,

E[‖δ↓‖22|E ] ≤ 8

(
λ‖f∗‖2F +

M3/2ρ4‖f∗‖2FΨβt
λ

)
Since E[‖δ↓‖22] = P(E)E[‖δ↓‖22|E ] + P(Ec)E[‖δ↓‖22|Ec] and by using the fact that ‖δ↓‖2 ≤ ‖E[∆|Xn

1 ]‖22 ≤ ‖f∗‖22, we
have

E[‖δ↓‖22] ≤ 8λ‖f∗‖2F +
8Mρ4‖f∗‖2FΨβt

λ
+(

max

(√
max(q, log t) ,

max(q, log t)

n1/2−1/q

)
× MCρ2γk(λ)√

n

)q
‖f∗‖22

Finally using (16) and by noting that

‖E[∆|Xn
1 ]‖22 ≤M

M∑
j=1

‖E[∆(j)|Xn
1 ]‖22 = M

(
‖δ↓‖22 +

∑
j

‖δ(j)
↑ ‖

2
2

)
≤M

(
‖δ↓‖22 + ‖f∗‖2F

∑
j

µ
(j)
t+1

)
and then taking expectation over Xn

1 , we obtain the bound for the bias in (9).

Proofs of Technical Lemmas

A.2.1. PROOF OF LEMMA 7

Lemma 7 is straightforward.

‖Q−1M−1θ↓‖22 =

M∑
j=1

‖Q(j)−1
M(j)−1

θ
(j)
↓ ‖

2
2 =

M∑
j=1

θ
(j)
↓
>

(M(j)2
+ λM(j))−1θ

(j)
↓

≤
M∑
j=1

θ
(j)
↓
>

(λM(j))−1θ
(j)
↓ =

1

λ

M∑
j=1

t∑
`=1

θ
(j)
`

2

µ
(j)
`

≤ 1

λ
‖f∗‖2F

A.2.2. PROOF OF LEMMA 8

We first decompose the LHS as follows,∥∥∥∥ 1

n
Q−1Φ>v

∥∥∥∥2

2

=

∥∥∥∥(M + λI)−1/2

(
1

n
M1/2Φ>v

)∥∥∥∥2

2

≤ 1

λ

∥∥∥∥ 1

n
M1/2Φ>v

∥∥∥∥2

2

(17)

The last step follows by noting that ‖(M + λI)−1/2‖2op = maxj,` 1/(µ
(j)
` + λ) ≤ 1/λ. Further,

E
[
‖M1/2Φ>v‖22

]
=

M∑
j=1

t∑
`=1

µ
(j)
` E[(Φ

(j)
`

>
v)2] ≤

M∑
j=1

t∑
`=1

µ
(j)
` E[‖Φ(j)

` ‖
2
2‖v‖22] (18)

Note that the term inside the summation in the RHS can be bounded by,
√
E[‖Φ(j)

` ‖42]E[‖v‖42]. We bound the first expec-
tation via,

E
[
‖Φ(j)

` ‖
4
]

= E

[( n∑
i=1

φ
(j)
` (Xi)

2

)2
]
≤ E

[
n

n∑
i=1

φ
(j)
` (Xi)

4

]
≤ n2ρ4



Shrunk Additive Least Squares Approximation

where the last step follows from Assumption 2. For the second expectation we first bound ‖v‖4,

‖v‖42 =

 n∑
i=1

( M∑
j=1

v
(j)
i

)2
2

≤

M n∑
i=1

M∑
j=1

v
(j)
i

2

2

≤M3n

n∑
i=1

M∑
j=1

v
(j)
i

4

Now by the Cauchy Schwarz inequality,

v
(j)
i

2
=

(∑
`>t

δ
(j)
` φ

(j)
` (Xi)

)2

≤
(∑
`>t

δ
(j)
`

2

µ
(j)
`

)(∑
`>t

µ
(j)
` φ

(j)
` (Xi)

2

)
.

Therefore,

E
[
‖v‖4

]
≤M3n

n∑
i=1

M∑
j=1

E

[
‖E[∆(j)|Xn

1 ]‖4H
k(j)

(∑
`>t

µ
(j)
` φ

(j)
` (Xi)

2

)2
]

≤M3n‖f∗‖4F
M∑
j=1

n∑
i=1

∑
`,`′>t

E[µ
(j)
` µ

(j)
`′ φ

(j)
` (Xi)

2φ
(j)
`′ (Xi)

2]

≤M3nρ4‖f∗‖4F
M∑
j=1

n∑
i=1

(∑
`>t

µ
(j)
`

)2

≤M3n2ρ4‖f∗‖4F
M∑
j=1

β
(j)
t

2

Here, in the first step we have used the definition of ‖E[∆(j)|Xn
1 ]‖H

k(j)
, in the second step, equation (15), in the third step

assumption 2 and Cauchy Schwarz, and in the last step, the definition of βt. Plugging this back into (18), we get

E
[
‖M1/2Φ>v‖2

]
≤M3/2n2ρ4‖f∗‖2F

√√√√ M∑
j=1

β
(j)
t

2
M∑
j=1

t∑
`=1

µ
(j)
` ≤M

3/2n2ρ4‖f∗‖2FΨβt

This bound, along with equation (17) gives us the desired result.

A.2.3. PROOF OF LEMMA 9

Define π(j)
i = {φ(j)

` (xi)}t`=1 ∈ Rt, πi = [π
(1)
i ; . . . ;π

(M)
i ] ∈ RtM and the matricesAi = Q−1(πiπ

>
i −I)Q−1 ∈ Rtm×tM .

Note that Ai = A>i and
E[Ai] = Q−1(E[πiπ

>
i ]− I)Q−1 = 0.

Then, if εi, i = 1, . . . , n are i.i.d Rademacher random variables, by a symmetrization argument we have,

E
[∥∥∥Q−1

(
1

n
Φ>Φ− I

)
Q−1

∥∥∥k
op

]
= E

[∥∥∥ 1

n

n∑
i=1

Ai

∥∥∥k
op

]
≤ 2kE

[∥∥∥ 1

n

n∑
i=1

εiAi

∥∥∥k
op

]
(19)

The above term can be bounded by the following expression.

2q

√emax(q, log(t))
ρ2
√
M√
n

√√√√ M∑
`=1

γ(j)(λ)2 + 4emax(q, log(t))ρ2

(
M

n

)1−1/q
(

M∑
`=1

γ(j)(λ)q

)1/q
q

≤
(
C

2

)q
max

(√
M(max(q, log t)),

M1−1/q max(q, log t)

n1/2−1/q

)q (
ρ2γk(λ)√

n

)q
The proof mimics Lemma 6 in (Zhang et al., 2013) by performing essentially the same steps over F instead of the usual
Hilbert space. In many of the steps, M terms appear (instead of the one term for KRR) which is accounted for via Jensen’s
inequality.

Finally, by Markov’s inequality,

P(Ec) ≤ 2kE
[∥∥∥Q−1

(
1

n
Φ>Φ− I

)
Q−1

∥∥∥q
op

]
≤ Cq max

(√
M(max(q, log t)),

M1−1/q max(q, log t)

n1/2−1/q

)q (
ρ2γk(λ)√

n

)q
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A.3. Variance (Proof of Bound (10))

Once again, we follow Zhang et al. (2013). The tricks we use to generalise it to the additive case (i.e. over F) are the same
as that for the bias. Note that since E[‖f̂−Ef̂‖22] ≤ E[‖f̂−g‖22] for all g, it is sufficient to bound E[‖f̂−f∗‖22] = E[‖∆‖22].

First note that,

λE[‖f̂‖2F |Xn
1 ] ≤ E

[
1

n

n∑
i=1

(
f̂(Xi)− Yi

)2

+ λ‖f̂‖2F
∣∣∣∣Xn

1

]
≤ 1

n

n∑
i=1

E[ε2i |Xn
1 ] + λ‖f∗‖2F ≤ σ2 + λ‖f∗‖2F

The second step follows by the fact that f̂ is the minimiser of (12). Then, for all j,

E[‖∆(j)‖2H
k(j)
|Xn

1 ] ≤ E[‖∆‖2F |Xn
1 ] ≤ 2‖f∗‖2F + 2E[‖f̂‖22|Xn

1 ] ≤ 2σ2

λ
+ 4‖f∗‖2F (20)

Let ∆(j) =
∑∞
`=1 δ

(j)
` φ

(j)
` . Note that the definition of δ(j)

` is different here. Define δ(j)
↓ , δ

(j)
↑ ,∆

(j)
↓ ,∆

(j)
↑ , δ↓ analogous to

the definitions in Section A.2. Then similar to before we have,

E[‖δ(j)
↑ ‖

2
2] ≤ µ(j)

t+1E[‖∆(j)
↑ ‖

2
H
k(j)

] ≤ µ(j)
t+1

(
2σ2

λ
+ 4‖f∗‖2F

)
We may use this to obtain a bound on E[‖∆↑‖2]. To obtain a bound on E[‖∆↓‖2], take the F inner product of
(0, . . . , φ

(j)
` , . . . ,0) with the first order optimality condition (13) and following essentially the same procedure to the

bias we get, (
1

n
Φ>Φ + λM−1

)
δ↓ = −λM−1θ↓ −

1

n
Φ>v +

1

n
Φ>ε

where Φ,M, θ↓ are the same as in the bias calculation. v(j) ∈ Rn where v(j)
i =

∑
`>t δ

(j)
` φ

(j)
` (Xi) = E[∆

(j)
↑ (Xi)|Xn

1 ]

(recall that δ(j)
` is different to the definition in the bias) and ε ∈ Rn, εi = Yi − f∗(Xi) is the vector of errors. Then we

write, (
I +Q−1

(
1

n
Φ>Φ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ −

1

n
Q−1Φ>v +

1

n
Q−1Φ>ε

where Q = (I + λM−1)1/2 as before. Following a similar argument to the bias, when the event E holds,

‖δ↓‖22 ≤ ‖Qδ↓‖22 ≤ 4‖λQ−1M−1θ↓ +
1

n
Q−1Φ>v +

1

n
Q−1Φ>ε‖22

≤ 12‖λQ−1M−1θ↓‖2 + 12‖ 1

n
Q−1Φ>v‖2 + 12‖ 1

n
Q−1Φ>ε‖22 (21)

By Lemma 7, the first term can be bounded via 12λ‖f∗‖2F . For the second and third terms we use the following two
lemmas, the proofs of which are given at the end of this subsection.

Lemma 10. E
[
‖ 1
nQ
−1Φ>v‖22

]
≤ 1

λMρ4Ψβt(2σ
2/λ+ 4‖f∗‖2F ).

Lemma 11. E
[∥∥ 1

nQ
−1Φ>ε

∥∥2

2

]
≤ σ2

n γk(λ)

Note that E[‖δ↓‖22] ≤ P(E)E[‖δ↓‖22|E ] + E[1(Ec)‖δ↓‖22]. The bound on the first term comes via equation (21) and Lem-
mas 7, 10 and 11. The second term can be bound via,

E[1(Ec)‖δ↓‖22] ≤ E[1(Ec)E[‖∆‖2F |Xn
1 ]

≤
(

max

(√
max(q, log t) ,

max(q, log t)

n1/2−1/q

)
× MCρ2γk(λ)√

n

)q (
2σ2

λ
+ 4‖f∗‖2F

)
(22)
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Here, we have used equation (20) and Lemma 9. Finally, note that

E[‖∆‖22] ≤M
∑
j

E[‖∆(j)‖22] = M
(
E‖δ↓‖22 +

∑
j

E‖δ(j)
↑ ‖

2
2

)
≤M

(
E‖δ↓‖22 +

(2σ2

λ
+ 4‖f∗‖2F

)∑
j

µ
(j)
t+1

)
(23)

When we combine (21), (22) and (23) we get the bound in equation (10).

Proofs of Technical Lemmas

A.3.1. PROOF OF LEMMA 10

Note that following an argument similar to equation (25) in Lemma 8, it is sufficient to bound E‖M1/2Φ>v‖22. We expand
this as,

E
[
‖M1/2Φ>v‖22

]
=

M∑
j=1

t∑
`=1

µ
(j)
` E[(Φ

(j)
`

>
v)2] ≤

M∑
j=1

t∑
`=1

µ
(j)
` E[‖Φ(j)

` ‖
2‖v‖2]

To bound this term, first note that

‖v‖2 =

n∑
i=1

( M∑
j=1

v
(j)
i

)2

≤M
n∑
i=1

M∑
j=1

v
(j)
i

2
≤M

n∑
i=1

M∑
j=1

(∑
`>t

δ
(j)
`

2

µ
(j)
`

)(∑
`>t

µ
(j)
` φ

(j)
` (Xi)

2

)
Therefore,

E
[
‖M1/2Φ>v‖2

]
≤

M∑
j=1

t∑
`=1

µ
(j)
` M

n∑
i=1

M∑
j′=1

E

[
E[‖∆(j′)‖2H

k(j
′)
|Xn

1 ]‖Φ(j)
` ‖

2
∑
`′>t

µ
(j′)
`′ φ

(j′)
`′ (Xi)

2

]
(24)

≤M
(

2σ2

λ
+ 4‖f∗‖2F

) M∑
j=1

t∑
`=1

µ
(j)
`

n∑
i=1

M∑
j′=1

∑
`′>t

µ
(j′)
`′ E

[
‖Φ(j)

` ‖
2φ

(j′)
`′ (Xi)

2
]

For all i, the inner expectation can be bounded using assumption 2 and Jensen’s inequality via,

E
[
‖Φ(j)

` ‖
2φ

(j′)
`′ (Xi)

2
]
≤
√
E
[
‖Φ(j)

` ‖4
]
E
[
φ

(j′)
`′ (Xi)4

]
≤ ρ2

√√√√E

[( n∑
i=1

φ
(j)
` (Xi)2

)2
]

≤ ρ2

√√√√E

[
n

n∑
i=1

φ
(j)
` (Xi)4

]
≤ ρ2

√
n2ρ4 = nρ4.

This yields,

E
[
‖M1/2Φ>v‖2

]
≤Mn2ρ4

(
2σ2

λ
+ 4‖f∗‖2F

) M∑
j=1

t∑
`=1

µ
(j)
`︸ ︷︷ ︸

≤Ψ

M∑
j′=1

∑
`′>t

µ
(j′)
`′︸ ︷︷ ︸

=βt

Finally, we have

E

[∥∥∥∥ 1

n
Q−1Φ>v

∥∥∥∥2

2

]
≤ E

[
1

λ

∥∥∥∥ 1

n
M1/2Φ>v

∥∥∥∥2

2

]
≤ 1

λ
Mρ4Ψβt

(
2σ2

λ
+ 4‖f∗‖2F

)
(25)
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A.3.2. PROOF OF LEMMA 11

We expand the LHS as follows to obtain the result.

E
[∥∥ 1

n
Q−1Φ>ε

∥∥2
]

=
1

n2

M∑
j=1

t∑
`=1

n∑
i=1

1

1 + λ/µ
(j)
`

E[φ
(j)
` (Xi)

2
ε2i ] ≤

σ2

n

M∑
j=1

γ(j)(λ) =
σ2

n
γk(λ)

The first step is just an expansion of the matrix. In the second step we have used E[φ
(j)
` (Xi)

2
ε2i ] = E[φ

(j)
` (Xi)

2
E[ε2i |Xi]] ≤

σ2 since E[φ
(j)
` (X)2] = 1. In the last two steps we have used the definitions of γ(j)(λ) and γk(λ).

B. Proof of Theorem 4: Rate of Convergence in Different RKHSs
Our strategy will be to choose λ so as to balance the dependence on n in the first two terms in the RHS of the bound in
Theorem 3.

Proof of Theorem 4-1. Polynomial Decay:
The quantity γk(λ) can be bounded via Md

∑∞
`=1 1/(1 + λ/µ̃`). If we set λ = n

−2s
2s+d , then

γk(λ)

Md
=

∞∑
`=1

1

1 + n
−2s
2s+d /µ̃`

≤ n
d

2s+d +
∑

`>n
d

2s+d

1

1 + n
2s

2s+d `
2s
d

≤ n
d

2s+d + n−
2s

2s+d

∑
`>n

d
2s+d

1

n
−2s
2s+d + `

2s
d

≤ n
d

2s+d + n
−2s
2s+d

(
n

d
2s+d +

∫ ∞
n

d
2s+d

u−2s/ddu

)
∈ O(n

d
2s+d ).

Therefore, γk(λ)/n ∈ O(Mdn
−2s
2s+d ) giving the correct dependence on n as required. To show that χ(k) is negligible, set

t = n
3d

2s−d . Ignoring the poly(D) terms, both µ̃t+1, βt ∈ O(n
−6s
2s−d ) and χ(k) is low order. Therefore, by Thereom 3 the

excess risk is in O(M2
dn

−2s
2s+d ).

Proof of Theorem 4-2. Exponential Decay:
By setting λ = 1/n and following a similar argument to above we have,

γk(λ)

Md
≤
√

log n

α
+

1

λ

∑
`>
√

logn/α

µ̃` ≤
√

log n

α
+ nπ̃d

∑
`>
√

logn/α

exp(−α`2)

≤
√

log n

α
+ nπ̃d

(
1

n
+

∫ ∞
√

logn/α

exp(−α`2)

)
=

√
log n

α
+ π̃d

(
1 +

√
π

2
(1− Φ(

√
log n)

)
,

where Φ is the Gaussian cdf. In the first step we have bounded the first
√

logn
α terms by 1 and then bounded the second

term by a constant. Note that the last term is o(1). Therefore ignoring log n terms, γk(λ) ∈ O(Mdπ̃
d) which gives excess

risk O(M2
d π̃

d/n). χ(k) can be shown to be low order by choosing t = n2 which results in µ̃t+1, βt ∈ O(n−4).

C. Proof of Theorem 5: Analysis in the Agnostic Setting
As before, we generalise the analysis by Zhang et al. (2013) to the tuple RKHS F . We begin by making the following
crucial observation about the population minimiser (7) fλ =

∑M
j=1 f

(j)
λ ,

fλ = argmin
g∈Hd,λ

‖g − f∗‖22. (26)
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To prove this, consider any g =
∑M
j=1 g

(j) ∈ Hd,λ. Using the fact that R(g) = R(f∗) + ‖g − f∗‖22 for any g and that
‖g‖F ≤ Rd,λ we obtain the above result as follows.

E
[
(f∗(X)− Y )2

]
+ ‖fλ − f∗‖22 + λR2

d,λ = E[(fλ(X)− Y )2] + λR2
d,λ

≤ E[(g(X)− Y )2] + λ

M∑
j=1

‖g(j)‖2H
k(j)
≤ E

[
(f∗(X)− Y )2

]
+ ‖g − f∗‖22 + λR2

d,λ.

By using the above, we get for all η > 0,

E
[
‖f̂ − f∗‖22

]
≤ (1 + η)E

[
‖fλ − f∗‖22

]
+ (1 + 1/η)E

[
‖f̂ − fλ‖22

]
= (1 + η) inf

g∈Hd,λ
‖g − f∗‖22︸ ︷︷ ︸
AE

+(1 + 1/η)E
[
‖f̂ − fλ‖22

]︸ ︷︷ ︸
EE

For the first step, by the AM-GM inequality we have 2
∫

(f̂ − fλ)(fλ − f∗) ≤ 1/η
∫

(f̂ − fλ)2 + η
∫

(fλ − f∗)2. In the
second step we have used (26). The term AE is exactly as in Theorem 5 so we just need to bound EE.

As before, we consider the RKHS F . Denote the representation of fλ in F by fλ = (f
(1)
λ , . . . , f

(M)
λ ). Note that Rd,λ =

‖fλ‖F . Analogous to the analysis in Appendix A we define ∆(j) = f̂ (j) − f (j)
λ , ∆ =

∑
j ∆(j) = f̂ − fλ and ∆ =

(∆(1), . . . ,∆(M)). Note that EE = E[‖∆‖22].

Let ∆(j) =
∑∞
`=1 δ

(j)
` φ

(j)
` be the expansion of ∆(j) in L2(PX). For t ∈ N, which we will select later, define ∆

(j)
↓ =∑t

`=1 δ
(j)
` φ

(j)
` , ∆

(j)
↑ =

∑
`>t δ

(j)
` φ

(j)
` , δ(j)

↓ = (δ(1), . . . , δ(t)) ∈ Rt and δ(j)
↑ = (δ

(j)
` )`>t. Let ∆↓ =

∑
j ∆

(j)
↓ and ∆↑ =∑

j ∆
(j)
↑ . Continuing the analogy, let f (j)

λ =
∑M
j=1 θ

(j)
` φ

(j)
` be the expansion of f (j)

λ . Let θ(j)
↓ = (θ

(j)
1 , . . . , θ

(j)
t ) ∈ Rt

and θ↓ = [θ
(1)
↓ ; . . . ; θ

(M)
↓ ] ∈ RtM . Let v ∈ Rn such that v(j)

i =
∑
`>t δ

(j)
` φ

(j)
` (Xi) and vi =

∑
j v

(j)
i . Let ε ∈ Rn,

εi = Yi − fλ(Xi). Also define the following quantities:

ς2λ(x) = E[(Y − fλ(X))2|X = x], B4
λ = 32‖fλ‖4F + 8E[ς4λ(X)]/λ2.

We begin with the following lemmas.

Lemma 12. E[ς4λ(X)] ≤ 8Ψ2‖fλ‖4Fρ4 + 8ν4.

Lemma 13. E
[(
E[‖∆‖2F |Xn

1 ]
)2] ≤ B4

λ.

We first bound E[‖∆(j)
↑ ‖22] =

∑
`>t Eδ

(j)
`

2
using Lemma 13 and Jensen’s inequality.

E
[
‖δ(j)
↑ ‖

2
2

]
=
∑
`>t

E[δ
(j)
`

2
] ≤ µ(j)

t+1E

∑
`>t

δ
(j)
`

2

µ
(j)
`

 ≤ µ(j)
t+1E

[
‖∆(j)‖2H

k(j)

]
≤ µ(j)

t+1E
[
‖∆‖2F

]
≤ µ(j)

t+1B
2
λ (27)

Next we proceed to bound E[‖∆↓‖22]. For this we will use Φ(j),Φ(j)
` ,M(j),M, Q from Appendix A. The first order

optimality condition can be written as,

1

n

n∑
i=1

ξXi (〈ξXi ,∆〉 − εi) + λf̂ = 0.

This has the same form as (13) but the definitions of ∆ and εi have changed. Now, just as in the variance calculation, when
we take the F-inner product of the above with (0, . . . , φ

(j)
` , . . . ,0) and repeat for all j we get,(

I +Q−1

(
1

n
Φ>Φ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ −

1

n
Q−1Φ>v +

1

n
Q−1Φ>ε
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Since Φ,M, Q are the same as before we may reuse Lemma 9. Then, as Q � I when the event E holds,

‖δ↓‖22 ≤ ‖Qδ↓‖22 ≤ 4‖λQ−1M−1θ↓ +
1

n
Q−1Φ>v +

1

n
Q−1Φ>ε‖22

≤ 8‖ 1

n
Q−1Φ>v‖2 + 8‖λQ−1M−1θ↓ −

1

n
Q−1Φ>ε‖22 (28)

We now bound the two terms in the RHS in expectation via the following lemmas.

Lemma 14. E[‖ 1
nQ
−1Φ>v‖2] ≤ 1

λMB2
λρ

4Ψβt

Lemma 15. E[‖λQ−1M−1θ↓ − 1
nQ
−1Φ>ε‖22] ≤ 1

nρ
2γk(λ)

√
E[ς4λ(X)]

Now by Lemma 13 we have, E[‖δ↓‖22] = P(E)E[‖δ↓‖22|E ] + E[1(Ec)‖δ↓‖22] ≤ E[‖δ↓‖22|E ] +B2
λP(Ec). E[‖δ↓‖22|E ] can be

bounded using Lemmas 14 and 15 while P(Ec) can be bounded using Lemma 9. Combining these results along with (27)
we have the following bound for EE = E[‖∆‖22],

E[‖∆‖22] ≤ E

[∥∥∥∥ M∑
j=1

∆(j)

∥∥∥∥2

2

]
≤M

M∑
j=1

E
[
‖∆(j)‖22

]
= M

E[‖δ↓‖22] +

M∑
j=1

E[‖δ(j)
↓ ‖

2
2]


≤ 8

n
Mρ2γk(λ)

√
E[ς4λ(X)] +

8

λ
M2B2

λρ
4Ψβt +B2

λM

(
CMdb(n, t, q)ρ

2γk(λ)√
n

)q
+B2

λM
∑
j

µ
(j)
t+1

Now we choose t large enough so that the following are satisfied,

βt ≤
λ

M2nB4
λ

,

M∑
j=1

µ
(j)
t+1 ≤

1

MnB4
λ

,

(
CMdb(n, t, q)ρ

2γk(λ)√
n

)q
≤ 1

MnB4
λ

.

Then the last three terms are O(1/nB2
λ) and the first term dominates. Using Lemma 12 and recalling that R2

d,λ =∑
j R

(j)
λ

2
= ‖fλ‖2F we get EE ∈ O

(
n−1Mγk(λ)R2

d,λ

)
as given in the theorem.

Proofs of Technical Lemmas

C.1. Proof of Lemma 13

Since f̂ is the minimiser of the empirical objective,

E
[
λ‖f̂‖2F |Xn

1

]
≤ E

λ M∑
j=1

‖f̂ (j)‖2H
k(j)

+
1

n

n∑
i=1

 M∑
j=1

f̂ (j)(X
(j)
i )− Yi

2 ∣∣∣∣∣Xn
1


≤ E

λ M∑
j=1

‖f (j)
λ ‖

2
H
k(j)

+
1

n

n∑
i=1

 M∑
j=1

f
(j)
λ (X

(j)
i )− Yi

2 ∣∣∣∣∣Xn
1

 ≤ λ‖fλ‖2F +
1

n

n∑
i=1

ς2λ(Xi)

Noting that ∆ = f̂ − fλ and using the above bound and Jensen’s inequality yields,

E[‖∆‖2F |Xn
1 ] ≤ 2‖fλ‖2F + 2E[‖f̂‖2F |Xn

1 ] ≤ 4‖fλ‖2F +
2

nλ

n∑
i=1

ς2λ(Xi)

Applying Jensen’s inequality once again yields,

E[(E[∆‖2F |Xn
1 ])2] ≤ E

 8

n2λ2

(
n∑
i=1

ς2λ

)2

+ 32‖fλ‖4F

 ≤ 8

nλ2

n∑
i=1

E[ς4λ] + 32‖fλ‖4F = B4
λ
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C.2. Proof of Lemma 12

First, using Jensen’s inequality twice we have

E[ς4λ(X)] = E
[
E[(Y − fλ(X))2|X]2

]
≤ E

[
(Y − fλ(X))4

]
≤ 8E[f4

λ(X)] + 8E[Y 4] (29)

Consider any f (j)
λ ,

f
(j)
λ (x) =

∞∑
`=1

θ
(j)
` φ

(j)
` (x)

(a)

≤

( ∞∑
`=1

µ
(j)
`

1/3
θ

(j)
`

2/3

)3/4
 ∞∑
`=1

θ
(j)
`

2
φ

(j)
` (x)

4

µ
(j)
`

1/4

(b)

≤

 M∑
j=1

µ
(j)
`

1/2 M∑
j=1

θ
(j)
`

2

µ
(j)
`

1/4 ∞∑
`=1

θ
(j)
`

2
φ

(j)
` (x)

4

µ
(j)
`

1/4

= Ψ(j)1/2
‖f (j)
λ ‖

1/2
H
k(j)

 ∞∑
`=1

θ
(j)
`

2
φ

(j)
` (x)

4

µ
(j)
`

1/4

In (a), we used Hölder’s inequality on µ(j)
`

1/4
θ

(j)
`

1/2
and θ(j)

`

1/2
φ

(j)
` (x)/µ

(j)
`

1/4
with conjugates 4/3 and 4 respectively.

In (b) we used Hölder’s inequality once again on µ(j)
`

2/3
and (θ

(j)
`

2
/µ

(j)
` )1/3 with conjugates 3/2 and 3. Now we expand

fλ in terms of the f (j)
λ ’s as follows,

fλ(x) ≤
M∑
j=1

Ψ(j)1/2
‖f (j)
λ ‖

1/2
H
k(j)

 ∞∑
`=1

θ
(j)
`

2
φ

(j)
` (x)

4

µ
(j)
`

1/4

≤

 M∑
j=1

Ψ(j)

1/2
 M∑
j=1

‖f (j)
λ ‖Hk(j)

 ∞∑
`=1

θ
(j)
`

2
φ

(j)
` (x)

4

µ
(j)
`

1/2


1/2

where we have applied Cauchy-Schwarz in the last step. Using Cauchy-Schwarz once again,

f2
λ(X) ≤ Ψ

 M∑
j=1

‖f (j)
λ ‖

2
H
k(j)

1/2 M∑
j=1

∞∑
`=1

θ
(j)
`

2
φ

(j)
` (X)

4

µ
(j)
`

1/2

Using Cauchy-Schwarz for one last time, we obtain

E[f4
λ(x)] ≤ Ψ2‖fλ‖2F

M∑
j=1

∞∑
`=1

θ
(j)
`

2
E[φ

(j)
` (x)]4

µ
(j)
`

≤ Ψ2‖fλ‖4Fρ2

where we have used Assumption 2 in the last step. When we combine this with (29) and use the fact that E[Y 4] ≤ ν4 we
get the statement of the lemma.

C.3. Proof of Lemma 14

The first part of the proof will mimic that of Lemma 10. By repeating the arguments for (24), we get
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]

Using Cauchy-Schwarz the inner expectation can be bounded via
√
E
[(
E[‖∆(j′)‖2H

k(j
′)

]
)2]E [‖Φ(j)

` ‖4φ
(j′)
`′ (Xi)4

]
.

Lemma 13 bounds the first expectation by B4
λ. To bound the second expectation we use Assumption 2.

E
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 ≤ n2ρ8
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Finally once again reusing some calculations from Lemma 10,
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C.4. Proof of Lemma 15

First note that we can write the LHS of the lemma as,

E
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To bound the inner expectation we use the optimality conditions of the population minimiser (7). We have,
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In the last step we have taken the F-inner product with (0, . . . , φ
(j)
` , . . . ,0). Therefore the term inside the expectation is

the variance of n−1
∑
i φ
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` (X
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i )εi and can be bounded via,
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Hence the LHS can be bounded via,
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D. Some Details on Experimental Setup
The function fd used in Figure 1(a) is the log of three Gaussian bumps,

fd(x) = log

(
α1

1

hdd
exp

(
‖x− v1‖2

2h2
d

)
+ α1

1

hdd
exp

(
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2h2
d

)
+ (1− α1 − α2)

1

hdd
exp

(
‖x− v3‖2

2h2
d

))
(31)

where hd = 0.01
√
d, α1, α2 ∈ [0, 1] and vi ∈ Rd are constant vectors. For figures 1(b)-1(f) we used fD where D is given

in the figures. In all experiments, we used a test set of 2000 points and plot the mean squared test error.

For the real datasets, we normalised the training data so that the X, y values have zero mean and unit variance along each
dimensions. We split the given dataset roughly equally to form a training set and testing set. We tuned hyper-parameters
via 5-fold cross validation on the training set and report the mean squared error on the test set. For some datasets the test
prediction error is larger than 1. Such datasets turned out to be quite noisy. In fact, when we used a constant predictor at 0
(i.e. the mean of the training instances) the mean squared error on the test set was typically much larger than 1.

Below, we list details on the dataset: the source, the used predictor and features.

1. Housing: (UCI), Predictor: CRIM
Features: All other attributes except CHAS which is a binary feature.

2. Galaxy: (SDSS data on Luminous Red Galaxies from Tegmark et al (2006)), Predictor: Baryonic Density
Features: All other attributes.
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3. fMRI: (From (Just et al., 2010)), Predictor: Noun representation
Features: Voxel Intensities. Since the actual dimensionality was very large, we use a random projection to bring it
down to 100 dimensions.

4. Insulin: (From (Tu, 2012)), Predictor: Insulin levels.
Features: SNP features

5. Skillcraft: (UCI), Predictor: TotalMapExplored
Features: All other attributes. The usual predictor for this dataset is LeagueIndex but its an ordinal attribute and not
suitable for real valued prediction.

6. School: (From Bristol Multilevel Modelling), Predictor: Given output
Features: Given features. We don’t know much about its attributes. We used the given features and labels.

7. CCPP*: (UCI), Predictor: Hourly energy output EP
Features: The other 4 features and 55 random features for the other 55 dimensions.

8. Blog: (UCI Blog Feedback Dataset), Predictor: Number of comments in 24 hrs
Features: The dataset had 280 features. The first 50 features were not used since they were just summary statistics.
Our features included features 51-62 given in the UCI website and the word counts of 38 of the most frequently
occurring words.

9. Bleeding: (From (Guillame-Bert et al., 2014)), Predictor: Given output
Features: Given features reduced to 100 dimensions via a random projection. We got this dataset from a private source
and don’t know much about its attributes. We used the given features and labels.

10. Speech: (Parkinson Speech dataset from UCI), Predictor: Median Pitch
Features: All other attributes except the mean pitch, standard deviation, minimum pitch and maximum pitches which
are not actual features but statistics of the pitch.

11. Music: (UCI), Predictor: Year of production
Features: All other attributes: 12 timbre average and 78 timbre covariance

12. Telemonit: (Parkinson’s Telemonitoring dataset from UCI), Predictor: total-UPDRS
Features: All other features except subject-id and motor-UPDRS (since it was too correlated with total-UPDRS). We
only consider the female subjects in the dataset.

13. Propulsion: (Naval Propulsion Plant dataset from UCI), Predictor: Lever Position
Features: All other attributes. We picked a random attribute as the predictor since no clear predictor was specifified.

14. Airfoil*: (Airfoil Self-Noise dataset from UCI), Predictor: Sound Pressure Level
Features: The other 5 features and 35 random features.

15. Forestfires: (UCI), Predictor: DC
Features: All other attributes. We picked a random attribute as the predictor since no clear predictor was specifified.

16. Brain: (From Wehbe et al. (2014)), Predictor: Story feature at a given time step
Features: Other attributes

Some experimental details: GP is the Bayesian interpretation of KRR. However, the results are different in Table 1. We
believe this is due to differences in hyper-parameter tuning. For GP, the GPML package (Rasmussen & Williams, 2006)
optimises the GP marginal likelihood via L-BFGS. In contrast, our KRR implementation minimises the least squares cross
validation error via grid search. Some Add-GP results are missing since it was very slow compared to other methods.
On the Blog dataset, SALSA took less than 35s to train and all other methods were completed in under 22 minutes. In
contrast Add-GP was not done training even after several hours. Even on the relatively small speech dataset Add-GP took
about 80 minutes. Among the others, BF, MARS, and SpAM were the more expensive methods requiring several minutes
on datasets with large D and n whereas other methods took under 2-3 minutes. We also experimented with locally cubic
and quartic interpolation but exclude them from the table since LL, LQ generally performed better. Appendix D has more
details on the synthetic functions and test sets.


