Simultaneous Safe Screening of Features and Samples in Doubly Sparse Modeling

A. Proofs
A.1. Proof of Lemma 1

Proof. Since Py(w) is A-strongly convex, Ywi,ws €
dOmP)\,

A
Px(w1) > Py(w2) + gp, (w2) " (w1 — wa) + §||w1 — wa[3,

where, gp, (w) € OP\(w). On the other hand, Vi €
domPy, gp, (w*)" (w0 — w*) > 0 (see Proposition B.24
in (Bertsekas, 1999)). Also, from weak duality, V& €
domDy, D(&) < Py(w*). By substituting wy = w,we =
w*,

A . R
Sl = w*|[3 < Py(@) — DA(&).
Therefore, w* is within a region ©,,«, where

Ou- 1= {w | | — w2 < /2Cx (@, &)/

Since ©,, is Sphere, a lower bound of ;] w* and an upper
bound of ] w* are given in closed form as follows:

LB(z] w*) =z — ||zi]|27/2GA (W, &)/,
UB(z] w*) = 2] + ||2ill2/2GA (1, &) /A
]
A.2. Proof of Theorem 2

Proof. Supposing that the result of the previous safe sam-
ple screening step assures the optimal values «; for a sub-
set of the samples ¢ € S C [n], the dual optimal solution
region is written as

Ou i={a €0,

a,=a;VieS}.

Then, X I a* is bounded from above by the following up-
per bound:

& T *
UB(X;a")
‘= max X:;oz
a€EO *
_ * T
= a; Xij +max Xy oy,
P s
€S e

5 <rp = llas — a5l

2\/rh — llas — 53

s.t ||6tus — oy,

= i X+ Xy 0w, + | Xu,
€S

T~

l2y/r% — llas — a3]3.

Similarly, X Ja* is bounded from below by the following
lower bound:

LB(XJa)= X[ a — | Xujll20/r% — s — a3l

Therefore,

UB(IXjal) = [Xja| + | Xu.;

2/rh — llds — a3

Since O,+ C O,-, the upper bound in (16) is tighter than
or equal to that in (9), i.e., UB(|X:;04*|) < UB(|X:—]'4—a* ).
|

A.3. Proof of Theorem 3

Proof. Supposing that the result of the previous safe fea-
ture screening step assures that w; = 0 for a subset of the
features j € F C [d], the primal optimal solution region is
written as

Ou = {w € O

Then, =] w* is bounded from below by the following lower
bound:

LB(z; w)
‘= min x;rw
WEB ,,*

T

=minz, w s.t. || —w|3 <rp,b; =05 €F
w

= minwgy wy, st oy, — w3 < rp - [loF|3

=z vy — |z ll2y/ 1 — o]

Similarly, #; w* is bounded from above by the following
upper bound:

UB(x] w*) =z duy + lza, l21/rh — |dF|3.

Since (:)w* C Oy, these boqnds in (17) are tighter than or
equal to those in (15), i.e., LB(z; w*) > LB(z; w*) and
UB(z] w*) < UB(z] w*). [ |

A.4. Proof of Theorem 6

The convex conjugate functions of L;-penalty and vanilla
hinge loss are respectively written as

ey J0 (vl 1),
vrlo) = {oo (otherwise), (19)
wi o Jyiai yioy € [=1,0],
bilas) = {oo (otherwise), 20

and the dual problem is written as

max Dy (a) := max {yTa}

S.t. || —o,;x;

‘)\n <1, yiey

o0

€ [0,1] Vi € [n].

We first construct the the dual optimal solution region Oq-.
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Lemma 8. For an arbitrary pair of primal feasible solution
w € domPy and dual feasible solution & € domD), the
dual optimal solution region is written as

Our = { Viyia; €[0,1] | y'a<yla< Py(b) }.

Proof of Lemma 8 . From the optimality and weak duality
y'a <yla*and y a* < Py (w), respectively. There-
fore,

a* €O, 1= { « € domDy | yla<yla< Py (w) } .
Noting that (:)a* C Oy, a* € Oy |
Proof of Theorem 6. From Lemma 8,

T % T %\ . T
X ja" > LB(X ;a"):= min X a

aEO  *
Moreover,
LB(X jo*) = Z;
(Kg0l) = 0l 2o
where o, = [y101,...,Yn0y] . Let us define three n-
dimensional vectors @V, @ and a® as follows:
o [w (Z<0)
v 0 (otherwise),
Yi (Zi; < 7] ;)
—(2) ._ A0, T A -1 Z/
a; "= yz(y & q) ( iy (lq+1)j)
0 (otherwise)
Yi (Z}; <z, ;)
_(3 .
o = { (P — ) (7= Ze )
0 (otherwise).

Ifly +1< ng, < ug, then aW is an element of O, and
minimizes X} . If g, <lg+1then a® € 0,-,a? is
an element of ©,~ and minimizes X, a because y " a(?) =
y'a. If mz: > g then V) ¢ ©,-, meaning that &) is

an element of © .~ and minimizes X, a because y ' a(®) =
P,. Therefore,

T o\ .__
LB(XTa") =
ly .
ol 2+ (v a—1y)2] (lg+1)j (”Z{j <lg+1),
Yoiti Zig+ (PA() —u ) Zyi (nZ{j > ug)
> iy min{0, Zj;} (otherwise),

Similarly, from Lemma 8,

Xja" SUB(Xja") = max Xjo
’ ' a€B,

Moreover,

UB(X,ja") = max AT

Let us define three n-dimensional vectors &(4), a®) and
a0 as follows:

a® ._ v (Zi;>0)
i 0 (otherwise),
(%) i (Zij 2 Z(ni,)y)
a;” =0 wilyTa—1y) (2= Z(n—lq—l)j)
0 (otherwise),
a® = { WP~ ) (2 = Z )
0 (otherwise).

Ifly +1<pz, < uqg then & is an element of O, and

Afpz, <lq +1then a® & O,-, a® is
5) _

maximizes X ; T
an element of @a* and maximizes X Ta because y | &l
yla. If pz:, > uq then a ¢ ©,-

an element of ©,- and maximizes X,} a because y " (%) =
Py. Therefore,

-, meaning that @) is

UB(Xja") =

Z:L n—lg Zl
Z?:nfuq Z;j

W a—19)Z, . 1y, (P2, <lg+1),
(P/\(’li})_Uq)Z(n u —1) (pZ/ >uq)

Yoy max{0, Z;} (0therw1se).
On the other hand, from KKT condition(6),
wi * £ ()
XTa* c \w | (wj ;’é ) (21)
An [-1,1] (otherwise).
Therefore, if LB(X,;a*) < —Anand UB(Xja*) > An
then w;‘ = 0. [ |
A.5. Proof of Theorem 7

First, we construct the primal optimal solution region O,

Lemma 9. The primal optimal solution region ©.« is
given Y € domP as

Ou+ = { w € domPy | Ajwl|y + (@) w <k},
(22)

where go(w) := 1 D i) 96 (W).
Proof. From Proposition B.24 in (Bertsekas, 1999),
(Agy (w

where gy (w) € 0vy(w). Form the convexity of ¢; for i €
[n] and the definition of subgradient

) 4 ge(w*)) T (w* — @) < 0,Vi € domPy,

Li(w*) > L (W) + gg, () (w* — ),V € domPy,
Li(w) > Li(w™) + g, (w*)(W —w"), Vib € dom Py,
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and thus, g, (w*) " (w* — W) > g, (W) " (w*
dom P, . Therefore, Vio € domP;,

— ), Vi €

Mgy (W) Tw* 4 go(0) Tw* < Agy (w*) T + go () T
Since gy(w) w0 = ||y = maxge_15as @ and
gy (w*) € [-1,1]%, we have

Mgy (W) Tad < Mgy (0) " ab.

By combining these results,

Alw* ||l + ge() "w* < k, Vb € domPy,.

|
Proof of Theorem 7. From Lemma 9,
z]w* > LB(x w*) := min 2] w.
WEB =
Using a Lagrange multiplier p > 0,
LB(xiTw*) = min szw St w € Oy (23)

= minmgg;{x?w + pMwlly + ge(@) "w — k)}
woop

= max{yuk +min(z w + pA|w]ly + pge(d) "w)}

L(w)

Since 0 € JL, which is written as 0L = x; + pA\oyY(w) +
1ge(W), we have

pAGy (W) = =i — pge(w) (24)
Substituting pA||w|| = —2, w — pge (1) Tw into (23),

LB(z; w*) = max{uk}
n>0

where the constraint comes from (24). Similarly, since

] w* <UB(z] w*) = max z]w=— mln z] w,
WEBO wWEB,,
UB(x] w*) = max{uk}
n>0
BT
st |12eTw — L ge(0) Twlloe < o

A

B. Safe keeping by using KKT optimality
conditions

In this appendix, we describe another type of safe keeping
approaches based on KKT optimality conditions.

Theorem 10. For an arbitrary pair of primal feasible solu-
tion w € dom Py and dual feasible solution & € domD),

T % T * *
LB(X  a") < —Anand \n < UB(X ;a") = wj #0
for j € [d], where

LB(Xja") =

UB(XJO[*) =

XTa X,
XTa+ X,

2nGA (0, &) [

Proof. In the case that D), is y/n-strongly concave, X Ja*
is bounded from below and above respectively by the fol-
lowing lower and upper bounds:

LB(Xja") = X[a — | X2

UB(Xjo*) =X o+ || X2

oG (1, 6)/
2nG (0, &

On the other hand, in the case of our specific regularization
term (2), from KKT optimality condition (6), if —An <
X.Jo* < Anthen w} # 0.

Therefore,

T % T * *
LB(X ja") < —Anand \n < UB(X ;a") = wj #0
]

Similarly, we can develop safe sample keeping based on
KKT optimality condition.

Theorem 11. For an arbitrary pair of primal feasible solu-
tion w € domP,y and dual feasible solution & € domD),
if ¢; is smoothed hinge loss then, for y; = +1,

1 -~ < LBz w*)and UB(z] w*) <1 = of & {0,+1},

and, fory; = —1,

1< LB(z] w*) and UB(z{ w*) < v —1 = af ¢ {~1,0}.

If 0; is smoothed e-insensitive loss then

—y+yi —e < LB(z w*) and UB(z] w*) < y; — ¢
or
yi +¢ < LB(z] w*) and UB(z, w*) < y+y; +¢
= aof €{-1,0,+1},

for j € [d], where

LB(z] w*) = ] — ||z
UB(.Z‘T’LU*) FRn) + ||lzi||2

K3 ’L
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Proof. In the case that Py is A-strongly convex, x; w* is

bounded from below and above respectively by the follow-
ing lower and upper bounds:

LB(xiTw*) xl W — |2

1
UB(z] w*) = & b + ||z

2G (W, &)/ A,

2G5 (0, &) /A

On the other hand, from KKT optimality condition (6), in
the case of smoothed hinge loss (3), if y; = +1 and 1 —
v < xfw* < 1then of € {0,+1},ify; = 1 and —1 <
x] w* <~y —1then o} € {—1,0}. Therefore,

yi=+land 1 — v < LB(z] w*) and UB(z] w*) < 1
= o] ¢{0,+1},

yi=—land —1 < LB(z] w*) and UB(z] w*) < v — 1
= o) ¢{-1,0}.

Also, in the case of smoothed e-insensitive (4), if —y+1y; —
e<z]w <y —eory, +e <z w <v+y;+ e then,
af ¢ {—1,0,+1} . Therefore,

—v 4y —e < LB(z] w*) and UB(z] w*) < y; — ¢
or
yi +¢ < LB(z] w*) and UB(z, w*) < y+y; +¢
= aof €{-1,0,+1},

C. Other experiments

In this appendix, we show the rest of the experimental re-
sults.
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Figure 5. Total computation time for training 100 solutions for
various values of \ in regression problems.
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Figure 6. Number of optimization steps and computation time
in classification problems (rcvl-train and rcvl-train
datasets). See the caption in Figure 4.
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Figure 7. Safe screening and keeping rates in classification problems (rcvl-train and rcvl-train datasets). See the caption in
Figure 2.
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Figure 8. Safe screening and keeping rates in regression problems. See the caption in Figure 2.



