
Interactive Bayesian Hierarchical Clustering

A. Proof Details
Lemma 3.1. Tree T is a refinement of tree T ′ if and only if ∆(T ′) ⊆ ∆(T ).

Proof. Suppose, first, that T is a refinement of T ′. Pick any triplet ({a, b}, c) ∈ ∆(T ′). Then there is a node in T ′ whose
descendants include a, b but not c. By the definition of refinement, T contains a node with the same descendants. Hence
the constraint ({a, b}, c) holds for T as well.

Conversely, say ∆(T ′) ⊆ ∆(T ). Pick any cluster S′ of T ′; it consists of the descendants of some node in T ′. Consider
the set of all triplet constraints consisting of two nodes of S′ and one node outside S′. Since these constraints also hold for
T , it follows that the lowest common ancestor of S′ in T must have exactly S′ as its set of descendants. Thus S′ is also a
cluster of T .

Lemma 3.3. A constrained-SPR Markov chain is irreducible.

Proof. To prove irreducibility, we show that there is a non-zero probability of moving from state T to T ′, both of which
satisfy C. We accomplish this by first defining a canonical tree TC given a triplet set C and showing that we can reach
TC from T using constrained-SPR moves. We then show that for every constrained-SPR move, there exists an equivalent
reverse move that undoes it with non-zero probability. This proves that that from TC we can reach T ′, creating a path from
T to TC to T ′.

A binary tree T can be entirely defined by the bipartitions made over the data at each node. Let Gn be the Aho graph
for node n. For a binary tree that satisfies a set of triplets, the split over the data at each node n must be a bipartition of
the connected components of Gn. We define a particular node to be in canonical form if either a) it is a leaf, or b) the
bipartition over Gn at that node can be written as (l, r), where l exactly matches a single, particular connected component
of Gn, and r is the rest of the connected components. The particular component l is the connected component in Gn with
the minimum data index inside it. Note that we treat the children of nodes as unordered. A canonical tree TC is one such
that every node in the tree is in canonical form. To convert an arbitrary tree T that satisfies C into TC , we first convert the
root node of T into canonical form using constrained-SPR moves.

Let s be the root of T and let l be the set of points that ought to be in their own partition according to Gs. In order for s
not to be in canonical form, l must be in a partition with data from other connected components in Gs, which we will call
o. The bipartition if s were in canonical form would be (l, r) and the current non-canonical bipartition can thus be written
as (l + o, r − o).

We first examine t, the child of the root that contains l + o. In general, the data from l and the data from o could be split
over the children of t, so the partition at t can be written as (l1 + o1, l2 + o2) where l = l1 + l2 and o = o1 + o2. This
is visualized in the first tree of Figure 5. We first group the data from l into their own “pure” subtree of t as follows. Let
u be the root of the lowest non-pure subtree of t that has data from l in both of its children. There exist two subtrees that
are descendants of u that contain data from l (one on the left and one on the right). Those two subtrees must be pure,
and furthermore, they are both free to move within u via constrained-SPR moves because they are in different connected
components in Gu. Thus, we can perform a constrained-SPR move to merge these two pure subtrees together into a larger
pure subtree. We can repeat this process for t until all nodes from l are in their own pure subtree of t. The partition of
t can thus be written as (l + o1, o2), since the pure subtree may be several levels down from t. This grouping process is
visualized in Figure S1 and the results can be seen in the second tree in Figure 5.

We now perform a constrained-SPR move to detach the pure subtree of l and regraft it to the edge between s and t. This
is a permissible move since l is its own connected component in Gs. We now have the third tree in Figure S2. We now
perform a final constrained-SPR move, moving the subtree of o to the opposite side of s, creating the proper canonical
partition of (l, r). To entirely convert T into TC , we need to recurse and convert every node in T into canonical form.

Every constrained-SPR move has an associated reverse constrained-SPR move that performs the opposite transition. The
reverse constrained-SPR move selects the same subtree as the forward one and prunes it, and just regrafts the subtree to
its original location before the forward move. We know that this regraft has non-zero probability because the original tree
did not violate constraints. Thus, since any arbitrary T can be converted into TC and since each move has a non-zero
probability reverse move, TC can be converted into an arbitrary tree T ′ and we have a non-zero probability path to convert
T into T ′.



Interactive Bayesian Hierarchical Clustering

Figure S1. The process of grouping the data in u that belong to l into their own pure subtree. u is the lowest node of t (see Figure 5) that
has data from l in both of its children.

Figure S2. The process of converting s into canonical form. We first group nodes from l into their own pure subtree, then perform two
constrained-SPR moves to put s into canonical form.



Interactive Bayesian Hierarchical Clustering

B. Additional Results

(a) Zoo (b) 20 Newsgroups

Figure S3. The average of four runs of constrained-SPR samplers for the Zoo dataset and the 20 Newsgroups dataset, using 5 different
querying schemes. A query was made every 100 iterations.


