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SUPPLEMENTARY MATERIAL

A. Proof of Theorem 2
Theorem 2. In any stochastic environment where the arms
have expected rewards µi ∈ [0, 1] with 1-subgaussian
noise, Algorithm 1 satisfies the following with probability
at least 1 − δ and for every time horizon n, when ψδ is
chosen in accordance with Remark 1 and with L = ψδ(n):

t∑

s=1

µIs ≥ (1− α)µ0t for all t ∈ {1, . . . , n}, (5)

R̃n ≤
∑

i>0:∆i>0

(
4L

∆i
+ ∆i

)
+

2(K + 1)∆0

αµ0

+
6L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
, (10)

R̃n ∈ O
(√

nKL+
KL

αµ0

)
. (11)

Proof. By Remark 1, with probability P {F} ≥ 1 − δ
the confidence intervals are valid for all t and all arms
i ∈ {1, . . . ,K}:

|µ̂i(t− 1)− µi| ≤
√
ψδ(Ti(t− 1))/Ti(t− 1)

≤
√
L/Ti(t− 1);

we will henceforth assume that this is the case (i.e. that F
holds). By the definition of the confidence intervals and by
the construction of Algorithm 1 we immediately satisfy the
constraint

n∑

t=1

µIt ≥ (1− α)nµ0 for all n.

We now bound the regret. Let i > 0 be the index of a
sub-optimal arm and suppose It = i. Since the confidence
intervals are valid,

µ∗ ≤ θi(t) ≤ µ̂i(t− 1) +
√
L/Ti(t− 1)

≤ µi + 2
√
L/Ti(t− 1) ,

which implies that arm i has not been chosen too often; in
particular we obtain

Ti(n) ≤ Ti(n− 1) + 1 ≤ 4L

∆2
i

+ 1. (17)

and the regret satisfies

R̃n =

K∑

i=0

Ti(n)∆i ≤
∑

i>0:∆i>0

(
4L

∆i
+ ∆i

)
+ T0(n)∆0.

If ∆0 = 0 then the theorem holds trivially; we therefore
assume that ∆0 > 0 and find an upper bound for T0(n).

Let τ = max{t ≤ n | It = 0} be the last round in which
the default arm is played. Since F holds and θ0(t) = µ0 <
µ∗ < maxi θi(t), it follows that Jt = 0 is never the UCB

choice; the default arm was only played because ξτ < 0:
K∑

i=0

Ti(τ − 1)λi(τ) + λJτ (τ)− (1− α)µ0τ < 0 (18)

By dropping λJτ (τ), replacing τ with
∑K
i=0 Ti(τ −1) + 1,

and rearranging the terms in (18), we get

αT0(τ − 1)µ0

< (1− α)µ0 +
K∑

i=1

Ti(τ − 1) ((1− α)µ0 − λi(τ))

≤ (1− α)µ0

+
K∑

i=1

Ti(τ − 1)

(
(1− α)µ0 − µi +

√
L

Ti(τ − 1)

)

≤ 1 +

K∑

i=1

Si . (19)

where ai = (1− α)µ0 − µi and

Si = Ti(τ − 1) ·
(

(1− α)µ0 − µi +
√
L/Ti(τ − 1)

)

= aiTi(τ − 1) +
√
LTi(τ − 1)

is a bound on the decrease in ξt in the first τ−1 rounds due
to choosing arm i. We will now bound Si for each i > 0.

The first case is ai ≥ 0, i.e. ∆i ≥ ∆0 + αµ0. Then (17)
gives Ti(τ − 1) ≤ 4L/∆2

i + 1 and we get

Si ≤
4Lai
∆2
i

+
2L

∆i
+ 2 ≤ 6L

∆i
+ 2 . (20)

The other case is ai < 0, i.e. ∆i < ∆0 + αµ0. Then

Si ≤
√
LTi(τ − 1) ≤ 2L

∆i
+ 1, (21)

and by using ax2 + bx ≤ −b2/4a for a < 0 we have

Si ≤ −
L

4ai
=

L

4(∆0 + αµ0 −∆i)
. (22)

Summarizing (20) to (22) gives

Si ≤
6L

max{∆i,∆0 −∆i}
+ 2 .

Continuing from (19), we get

T0(n) = T0(τ − 1) + 1

≤ 2K + 2

αµ0
+

1

αµ0

K∑

i=1

6L

max{∆i,∆0 −∆i}
.
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We can now upper bound the regret by

R̃n ≤
∑

i>0:∆i>0

(
4L

∆i
+ ∆i

)
+

2(K + 1)∆0

αµ0

+
6L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
. (10)

We will now show (11). To bound the regret due to the
non-default arms, Jensen’s inequality gives

(∑

i>0

Ti(n)∆i

)2

≤ m2
∑

i>0

Ti(n)

m
∆2
i ,

where m ≤ n is the number of times non-default arms
were chosen. Combining this with ∆2

i ≤ 4L/Ti(n) for
sub-optimal arms from (17) gives

∑

i>0

Ti(n)∆i ≤ 2
√
mKL ∈ O(

√
nKL).

To bound the regret due to the default arm, ob-
serve that max{∆i,∆0 − ∆i} ≥ ∆0/2 and thus
T0(n)∆0 ∈ O(KL/αµ0). Combining these two bounds
gives (11).

B. Proof of Theorem 5
Theorem 5. Algorithm 1, modified as above to work with-
out knowing µ0 but otherwise the same conditions as The-
orem 2, satisfies with probability 1 − δ and for all time
horizons n the constraint (5) and the regret bound

R̃n ≤
∑

i:∆i>0

(
4L

∆i
+ ∆i

)
+

2(K + 1)∆0

αµ0

+
7L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
. (15)

Proof. We proceed very similarly to the proof of Theo-
rem 2 in Appendix A. As we did there, we assume that
F holds: the confidence intervals are valid for all rounds
and all arms (including the default), which happens with
probability P {F} ≥ 1− δ.

To show that the modified algorithm satisfies the con-
straint (5), we write the budget (6) as

Z̃t =
K∑

i=1

Ti(t− 1)µi + µJt + (T0(t− 1)− (1− α)t)µ0

when the UCB arm Jt is chosen and show that it is indeed
lower-bounded by

ξ′t =

K∑

i=1

Ti(t− 1)λi(t) + λJt(t)

+ (T0(t− 1)− (1− α)t)θ0(t) . (14)

This is apparent if T0(t−1) < (1−α)t, since the last term
in (14) is then negative and θ0(t) ≥ µ0. On the other hand,
if T0(t− 1) ≥ (1−α)t then the constraint is still satisfied:

t∑

s=1

µIs ≥ T0(t− 1)µ0 ≥ (1− α)µ0t.

We now upper-bound the regret. As in the earlier proof,
we can show that for any arm i > 0 with ∆i > 0 we
have Ti(n) ≤ 4L/∆2

i + 1. If this also holds for i = 0

or if ∆0 = 0 then R̃n ≤
∑
i:∆>0(4L/∆i + ∆i) and the

theorem holds trivially. From now on we only consider the
case when ∆0 > 0 and T0(n) > 4L/∆2

0 + 1. As before,
we will proceed to upper-bound T0(n).

Let τ be the last round in which Iτ = 0. We can ignore
the possibility that Jτ = 0, since then the above bound on
Ti(n) would apply even to the default arm, contradicting
our assumption above. Thus we can assume that the default
arm was played because ξ′τ < 0:

K∑

i=1

Ti(τ − 1)λi(τ) + λJτ (τ)

+
(
T0(τ − 1)− (1− α)τ

)
θ0(τ) < 0 ,

in which we drop λJτ (τ), replace τ with
∑K
i=0 Ti(τ−1)+

1, and rearrange the terms to get

αT0(τ − 1)θ0(τ) < (1− α)θ0(τ)

+
K∑

i=1

Ti(τ − 1)
(
(1− α)θ0(τ)− λi(τ)

)
. (23)

We lower-bound the left-hand side of (23) using θ0(τ) ≥
µ0, whereas we upper-bound the right-hand side using

θ0(τ) ≤ µ0 +

√
L

T0(τ − 1)
≤ µ0 +

∆0

2
,

which comes from T0(τ − 1) ≥ 4L/∆2
0. Combining these

in (23) with the lower confidence bound λi(τ) ≥ µi −√
L/Ti(τ − 1) gives

αµ0T0(τ − 1) < (1− α)

(
µ0 +

∆0

2

)

+
K∑

i=1

Ti(τ − 1)

(
(1− α)

(
µ0 +

∆0

2

)

− µi +

√
L

Ti(τ − 1)

)

= (1− α)

(
µ0 +

∆0

2

)
+

K∑

i=1

Si

≤ 1 +
K∑

i=1

Si , (24)
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where ai = (1− α)(µ0 + ∆0/2)− µi and

Si = aiTi(τ − 1) +
√
LTi(τ − 1)

is a bound on the decrease in ξ′t in the first τ−1 rounds due
to choosing arm i. We will now bound Si for each i > 0.

Analogously to the previous proof, we get the bounds

Si ≤
6L

∆i
+ 2, when ai ≥ 0 ; (25)

Si ≤
2L

∆i
+ 1 , otherwise; (26)

and in the latter case, using ax2 + bx ≤ −b2/4a gives

Si ≤ −
L

4ai
=

L

4
(
(1 + α)∆0/2 + αµ0 −∆i

) . (27)

Summarizing (25) to (27) gives

Si ≤
6L

max
{

∆i, 24
(
(1 + α)∆0/2 + αµ0 −∆i

)} + 2

≤ 7L

max{∆i,∆0 −∆i}
+ 2 .

Continuing with (24), if T0(n) > 4L
∆2

0
+ 1, we get

T0(n) = T0(τ − 1) + 1

≤ 2K + 2

αµ0
+

1

αµ0

K∑

i=1

7L

max{∆i,∆0 −∆i}
.

We can now upper bound the regret by

R̃n ≤
∑

i:∆i>0

(
4L

∆i
+ ∆i

)
+

2(K + 1)∆0

αµ0

+
7L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
. (15)

C. Proof of Theorem 7
Theorem 7. Any R̂δt -admissible algorithm A, when
adapted with our safe-playing strategy, satisfies the con-
straint (2) and has a regret bound of Rn ≤ t0 + R̂δn
with probability at least 1 − δ where t0 = max{t |
αµ0t ≤ R̂δt + µ0}.

Proof of Theorem 7. It is clear from the description of
the safe-playing strategy that it is indeed safe: the con-
straint (2) is always satisfied.

The algorithm plays safe when the following quantity,
which is a lower bound on the budget Zt, is negative:

Z ′t = Zt −Xt,It =

t−1∑

s=1

Xs,Is − (1− α)µ0t

To upper bound the regret, consider only the rounds in
which our safe-playing strategy does not interfere with

playing A’s choice of arm. Then with probability 1− δ,

max
i∈{0,...,K}

t∑

s=1

1{Z ′s ≥ 0} (Xs,i −Xs,Is) ≤ R̂δB(t)

where B(t) =
∑t
s=1 1{Z ′s ≥ 0}. Let τ be the last round in

which the algorithm plays safe.

µ0B(τ − 1)

≤ max
i

τ−1∑

s=1

1{Z ′s ≥ 0}Xs,i

≤ R̂δB(τ−1) +
τ−1∑

s=1

1{Z ′s ≥ 0}Xs,Is

= R̂δB(τ−1) +

τ−1∑

s=1

Xs,Is − µ0(τ − 1−B(τ − 1))

≤ R̂δB(τ−1) + (1− α)µ0τ − µ0(τ − 1−B(τ − 1)) ,

which indicates αµ0τ ≤ R̂δτ + µ0 and thus τ ≤ t0. It
follows that Rn ≤ t0 + R̂δn.

D. Proof of Theorem 9
Theorem 9. Suppose for any µi ∈ [0, 1] (i > 0) and µ0

satisfying

min{µ0, 1− µ0} ≥ max
{

1/2
√
α,
√
e+ 1/2

}√
K/n,

an algorithm satisfies Eµ
∑n
t=1Xt,It ≥ (1−α)µ0n. Then

there is some µ ∈ [0, 1]K such that its expected regret sat-
isfies EµRn ≥ B where

B = max

{
K

(16e+ 8)αµ0
,

√
Kn√

16e+ 8

}
. (16)

Proof of Theorem 9. Pick any algorithm. We want to show
that the algorithm’s regret on some environment is at least
as large as B. If EµRn > B for some µ ∈ [0, 1]K , there
is nothing to be proven. Hence, without loss of generality,
we can assume that the algorithm is consistent in the sense
that EµRn ≤ B for all µ ∈ [0, 1]K .

For some ∆ > 0, define environment µ ∈ RK such that
µi = µ0 −∆ for all i ∈ [K]. For now, assume that µ0 and
∆ are such that µi ≥ 0; we will get back to this condition
later. Also define environment µ(i) for each i = 1, . . . ,K
by

µ
(i)
j =

{
µ0 + ∆, for j = i ;

µ0 −∆, otherwise.

In this proof, we use Ti = Ti(n) to denote the number of
times arm iwas chosen in the first n rounds. We distinguish
two cases, based on how large the exploration budget is.
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Case 1: α ≥
√
K

µ0

√
(16e+ 8)n

.

In this case, B =
√
Kn√

16e+8
and we use ∆ = (4e + 2)B/n.

For each i ∈ [K] define event Ai = {Ti ≤ 2B/∆}. First
we prove that Pµ(Ai) ≥ 1/2:

Pµ{Ti ≤ 2B/∆} = 1− Pµ{Ti > 2B/∆}

≥ 1− ∆Eµ[Ti]

2B

≥ 1− Eµ[Rn]

2B
≥ 1

2
.

Next we prove that Pµ(i)(Ai) ≤ 1/4e:

Pµ(i){Ti ≤ 2B/∆} = Pµ(i){n− Ti ≥ n− 2B/∆}

≤ Eµ(i) [n− Ti]
n− 2B/∆

≤ B

∆n− 2B
=

1

4e
.

Note that µ and µ(i) differ only in the ith component:
µi = µ0 − ∆ whereas µ(i)

i = µ0 + ∆. Then the KL di-
vergence between the reward distributions of the ith arms
is KL(µi, µ

(i)
i ) = (2∆)2/2 = 2∆2. Define the binary rel-

ative entropy to be

d(x, y) = x log
x

y
+ (1− x) log

1− x
1− y ;

it satisfies d(x, y) ≥ (1/2) log(1/4y) for x ∈ [1/2, 1] and
y ∈ (0, 1). By a standard change of measure argument
(see, e.g., Kaufmann et al., 2015, Lemma 1) we get that

Eµ[Ti] ·KL(µi;µ
(i)
i ) ≥ d(Pµ(Ai),Pµ(i)(Ai))

≥ 1

2
log

1

4(1/4e)
=

1

2

and so Eµ[Ti] ≥ 1/4∆2 for each i ∈ [K]. Hence

Eµ[Rn] = ∆
∑

i∈[K]

Eµ[Ti] ≥
K

4∆
=

√
Kn√

16e+ 8
= B .

Case 2: α <
√
K

µ0

√
(16e+ 8)n

.

In this case, B = K
(16e+8)αµ0

and we use ∆ = K/4αµ0n.
For each i define the event Ai = {Ti ≤ 2αµ0n/∆}. First
we prove that Pµ(Ai) ≥ 1/2:

Pµ{Ti ≤ 2αµ0n/∆} = 1− Pµ{Ti > 2αµ0n/∆}

≥ 1− ∆Eµ[Ti]

2αµ0n

≥ 1− Eµ[Rn]

2αµ0n
≥ 1

2
,

where we use the fact that

Eµ[Rn] = nµ0 − Eµ
[ n∑

t=1

Xt,It

]

≤ nµ0 − (1− α)µ0n = αµ0n.

Next, we show that Pµ(i)(Ai) < 1/4e:

Pµ(i){Ti ≤ 2αµ0n/∆}
= Pµ(i){n− Ti ≥ n− 2αµ0n/∆}

≤ Eµ(i) [n− Ti]
n− 2αµ0n/∆

≤ B

∆n− 2αµ0n

=
K

(4e+ 2)K − (32e+ 16)α2µ2
0n

<
1

4e
.

As in the other case, we have Eµ[Ti] > 1/4∆2 for each
i ∈ [K]. Therefore

Eµ[Rn] = ∆
∑

i∈[K]

Eµ[Ti] >
K

4∆
= αµ0n,

which contradicts the fact that Eµ[Rn] ≤ αµ0n. So there
does not exist an algorithm whose worst-case regret is
smaller than B.

To summarize, we proved that

EµRn ≥





√
Kn√

16e+ 8
, when α ≥

√
K

µ0

√
(16e+ 8)n

K

(16e+ 8)αµ0
, otherwise,

finishing the proof.


