Conservative Bandits

SUPPLEMENTARY MATERIAL

A. Proof of Theorem 2

Theorem 2. In any stochastic environment where the arms
have expected rewards p; € [0,1] with I-subgaussian
noise, Algorithm 1 satisfies the following with probability
at least 1 — § and for every time horizon n, when ° is
chosen in accordance with Remark 1 and with L = °(n):
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Z‘”s > (1 — a)upt forallt € {1,...,n}, (5)
s=1
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Proof. By Remark 1, with probability P{F} > 1 —§
the confidence intervals are valid for all ¢ and all arms
ie{l,..., K}

[t = 1) = il < \JUS(T (e~ 1)/ To(t — 1)
< VI/T{t ~ 1);

we will henceforth assume that this is the case (i.e. that F’
holds). By the definition of the confidence intervals and by
the construction of Algorithm 1 we immediately satisfy the
constraint

zmt >

We now bound the regret. Let 7+ > 0 be the index of a
sub-optimal arm and suppose I; = ¢. Since the confidence
intervals are valid,

[1,* S Gl(t) S ﬂi(ﬁ - 1) + L/Ti(t — 1)

< pi +2/L)Ti(t - 1),

which implies that arm ¢ has not been chosen too often; in
particular we obtain

(1 —a)npg for all n.

AL
— + 1. (17)

) < Tn — <
T;(n) < Ti(n 1)+1_Ai

and the regret satisfies

K
= Ti(n)A; <
=0

If Ag = 0 then the theorem holds trivially; we therefore
assume that Ao > 0 and find an upper bound for Ty (n).

> (ZL + A ) + To(n)Ag.

i>0:A;>0 v

Let 7 = max{t < n | I; = 0} be the last round in which
the default arm is played. Since F holds and 6y (t) = po <
w* < max; 6;(t), it follows that J; = 0 is never the UCB

choice; the default arm was only played because & < 0:

K
> Tyt —1)A
=0

By dropping A s, (7), replacing 7 with Zfio Ti(r—1)+1,
and rearranging the terms in (18), we get

(7) + A7 (7) = (L = a)poT <0 (18)

aTo(1 — 1)po
K
<(-a)uo+ ZTi(T = 1) ((1 = a)uo — (7))
< -a)uo
K L
+ ZTz(T 1) ((1 —a)po — i + ’Tl(T—l))
zflK
<1+ Z S; . (19)
where a; :27(1 — a)uo — i and
Si=Tir =1)- ((1 =)o — i + VI/Ti(r = 1))
= CL@'Ti(T — 1) + LT,‘(T — 1)

is a bound on the decrease in &; in the first 7 — 1 rounds due
to choosing arm i. We will now bound S; for each i > 0.
The first case is a; > 0, i.e. A; > Ay + apg. Then (17)
gives T;(1 — 1) < 4L/A? + 1 and we get
4La; 2L 6L
S; < L4242, 20
=ar PA TR T 0

The other case is a; < 0, 1i.e. A; < Ag + apg. Then

S; <VLTi(t—1) < Z—L +1, 21

and by using ax? + bx < —b?/4a for a < 0 we have
L L
S < —— = . 22
- 40,Z' 4(A() + Qo — Az) ( )
Summarizing (20) to (22) gives
6L
S; < 2
~ max{A;, Ag — A} -
Continuing from (19), we get
To(n) =To(r — 1)+ 1

2K +2 1 6L
< —_— .
T aug + Qi ; max{A;,Ag — A;}
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We can now upper bound the regret by

~ 4L 2(K + 1)A
R.< Y <A+Ai)+(+)°
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6L Ao
— E . (10
+ OLIU,O =1 max{Ai, AO — Al} ( )

We will now show (11). To bound the regret due to the
non-default arms, Jensen’s inequality gives

2
T;(n)
T;(n)A; | <m?Yy ““2AZ
(o) <2
where m < n is the number of times non-default arms
were chosen. Combining this with A? < 4L/T;(n) for
sub-optimal arms from (17) gives

> Ti(n)A; < 2VmKL € O(VnKL).

i>0
To bound the regret due to the default arm, ob-
serve that max{A;, Ay — A;} > Ag/2 and thus
To(n)Ag € O(KL/aug). Combining these two bounds
gives (11). O

B. Proof of Theorem 5

Theorem S. Algorithm 1, modified as above to work with-
out knowing po but otherwise the same conditions as The-
orem 2, satisfies with probability 1 — § and for all time
horizons n the constraint (5) and the regret bound

~ 4L 2(K +1)A
e X (Ma) s 20
iA;>0 N @Ho
K
7L Ag
—_— (1
+ Oé,U/o zz:; max{Ai, A() — Al} ( 5)

Proof. We proceed very similarly to the proof of Theo-
rem 2 in Appendix A. As we did there, we assume that
F holds: the confidence intervals are valid for all rounds
and all arms (including the default), which happens with
probability P {F} > 1 —.

To show that the modified algorithm satisfies the con-
straint (5), we write the budget (6) as

K
Zy = ZTi(t — D+ pg, + (To(t = 1) — (1 = a)t)uo

when the UCB arm J; is chosen and show that it is indeed
lower-bounded by

K
& = ZTi(t = DAi(t) +As(?)

F(To(t—1) — (1— a))bo(t). (14)

This is apparent if To(t — 1) < (1 — )¢, since the last term

in (14) is then negative and 6y (t) > 1. On the other hand,

if To(t — 1) > (1 — )t then the constraint is still satisfied:
¢

ZMS > To(t — Dpo > (1 — a)puot.
s=1

We now upper-bound the regret. As in the earlier proof,
we can show that for any arm ¢ > 0 with A; > 0 we
have T;(n) < 4L/A? + 1. If this also holds for i = 0
orif Ag = 0 then R, < 3, 0-0(4L/A; + A;) and the
theorem holds trivially. From now on we only consider the
case when Ag > 0 and Ty(n) > 4L/A3 + 1. As before,
we will proceed to upper-bound Ty (n).

Let 7 be the last round in which I, = 0. We can ignore
the possibility that J. = 0, since then the above bound on
T;(n) would apply even to the default arm, contradicting
our assumption above. Thus we can assume that the default
arm was played because &, < 0:

K
ZTi(T = D7) + Ag ()

+ (To(r = 1) — (1 — a)7) (1) < 0,
in which we drop A ;_(7), replace 7 with ZzK:O Ti(r—1)+
1, and rearrange the terms to get

aTo(r = 1)fo(7) < (1 = a)fo(7)

K

+ ) Ti(r = 1)((1 = a)bo(r) = Ai(7)) . (23)

i=1
We lower-bound the left-hand side of (23) using 0y (7) >
Lo, whereas we upper-bound the right-hand side using

Ay
§u0+7a

< I
Oo() < po + Tolr — 1) >

which comes from Tp(7 — 1) > 4L/A3. Combining these
in (23) with the lower confidence bound \;(7) > u; —

VL/T;(r — 1) gives

auoTo(r —1) < (1 — @) (uo + AQO)

+§Ti(7 - 1)((1 —a) <M0 + A2°>

L
N TE-

:(1—a)(uo+A20) +§:Si

i=1

K
<1+) S, (24)
1=1
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where a; = (1 — a)(po + Ao /2) — p; and
S; = (LiTi(T — 1) + LTZ'(T — 1)

is a bound on the decrease in ] in the first 7 — 1 rounds due
to choosing arm ¢. We will now bound S; for each ¢ > 0.

Analogously to the previous proof, we get the bounds

L
S; < % +2, whena; > 0; (25)
2L
S; < x + 1, otherwise; (26)
and in the latter case, using ax? + bz < —b?/4a gives
L L
S; < (27)

Cda; 41+ @)Ag/2 4 apo — Ay)
Summarizing (25) to (27) gives
S < 6L
maX{Ai, 24((1 + a)Ao/2 + apg — Az)}
< L + 2.
- maX{Ai7 A Al}
Continuing with (24), if To(n) > %Lg + 1, we get

+ 2

To(’n) = To(T - 1) + 1
K

2K +2 1 7L
< _— .
g + Qg Z max{A;, Ag — A;}

i=1
We can now upper bound the regret by

~ 4L 2(K +1)A
R.< <+Ai> 4 2K+ D2
s \B Ho

K
7L Ag
* e Z max{Ah A() — Al} ’

Qo =1

(15) O

C. Proof of Theorem 7

Theorem 7. Any Rf-admissible algorithm A, when
adapted with our safe-playing strategy, satisfies the con-
straint (2) and has a regret bound of R, < to + Ri
with probability at least 1 — § where to = max{t |
apot < R} + po}.

Proof of Theorem 7. 1t is clear from the description of
the safe-playing strategy that it is indeed safe: the con-
straint (2) is always satisfied.

The algorithm plays safe when the following quantity,
which is a lower bound on the budget Z,, is negative:

t—1
Zy =2~ Xep, = ) Xoq, — (1 —a)uot
s=1

To upper bound the regret, consider only the rounds in
which our safe-playing strategy does not interfere with

playing A’s choice of arm. Then with probability 1 — 4,
t

> WZL >0} (Xai — Xa
s=1

where B(t) = Y.'_, 1{Z/ > 0}. Let 7 be the last round in
which the algorithm plays safe.
poB(T —1)

T—1

<max » {7 >0} X,
‘ s=1

) < R%(t)

T—1

< Ryony + Y20 >0} X,
s=1

T—1

= R‘;(Tfl) + ZXS,IS —po(r=1—=B(r—-1))

s=1
< RY,_y)+ (1= a)uor — po(r — 1 — B(r — 1)),

which indicates oo < Rf + po and thus 7 < ¢o. It
follows that R,, < to + RS. O

D. Proof of Theorem 9

Theorem 9. Suppose for any p; € [0,1] (i > 0) and po
satisfying

min{pg, 1 — po} > max{l/2\/c7y7 ve+ 1/2}\/K/n,

an algorithm satisfies B, Y ;| X¢.1, > (1 — a)pon. Then
there is some p € [0, 1]% such that its expected regret sat-
isfies B, R,, > B where

K vVEKn
B = max , . (16)
(16e + 8)app” +/16e + 8

Proof of Theorem 9. Pick any algorithm. We want to show
that the algorithm’s regret on some environment is at least
as large as B. If E,R,, > B for some u € [0,1]%, there
is nothing to be proven. Hence, without loss of generality,
we can assume that the algorithm is consistent in the sense
that £, R,, < B forall u € [0, 1]¥.

For some A > 0, define environment p € RX such that
Wi = po — A for all ¢ € [K]. For now, assume that yo and
A are such that p; > 0; we will get back to this condition

later. Also define environment u(i) foreacht =1,..., K
by
(@) Jmo+A, forj=ij;
Hi 1o — A, otherwise.

In this proof, we use T; = T;(n) to denote the number of
times arm ¢ was chosen in the first n rounds. We distinguish
two cases, based on how large the exploration budget is.
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_ VK
1o/ (16€ + 8)n

In this case, B = \/7;6[; and we use A = (4de + 2)B/n.

For each i € [K] define event A; = {T; < 2B/A}. First
we prove that P, (A4;) > 1/2:

P {T; <2B/A}=1—

Casel: o >

P, {T, > 2B/A}

AE,[T]
>1— —pti
- 2B
Ly BuR 1
2B 2
Next we prove that ;) (A;) < 1/4e:

IPH(i,){Ti < QB/A} = ]PM(i){n —-T,>n— QB/A}
Eu(i) [n — Ti]
n—2B/A
B 1
< ——m— = —.
~— An—-2B 4e
Note that 4 and p(? differ only in the ith component:
i = po — A whereas ugl) = po + A. Then the KL di-
vergence between the reward distributions of the ¢th arms
is KL (5, \") = (2A)2/2 = 2A2. Define the binary rel-
ative entropy to be
1-
d(z,y) = xlog + (1 —2)log 1 z.
it satisfies d(x,y) > (1/2) log(1/4y) for x € [1/2 1] and
y € (0,1). By a standard change of measure argument
(see, e.g., Kaufmann et al., 2015, Lemma 1) we get that

E,[T3] - KL(u5: 1) > d(P,.(A:), P (A7)
1 1

> -1 =
=5 % 41/4e) ~ 2
and so E,,[T;] > 1/4A2 for each i € [K]. Hence

=AY B, S K _VEn g
e 4N \/16e + 38
vEK
Case2: o <

10+/(16e + 8)n

In this case, B = m and we use A = K/4apugn.
For each i define the event A; = {T; < 2auon/A}. First
we prove that P, (A4;) > 1/2:

P {T; <20pon/A} =1 —P{T; > 2apon/A}

| AE,T]
- 2aipom
>1- Eul ] > 1

2aepon 27

where we use the fact that

Ey[Ra] = npto = B[S X,
t=1
< npo — (1 — a)pon = apn.
Next, we show that P,y (4;) < 1/4e:
P, {Ti < 2apon/A}
=P, {n—T; > n—2aun/A}
< E, i [n— Ti]
— n—2auon/A
B
— An — 2augn
B K 1
" (4e+2)K — (32e + 16)a2uin ~ de
As in the other case, we have E,[T;] > 1/4A? for each
i € [K]. Therefore

=AY ELT
i€[K]

which contradicts the fact that E,,[R,,] < apon. So there
does not exist an algorithm whose worst-case regret is
smaller than B.

TA T Gpon,

To summarize, we proved that

VEn VK

————, whena >
V16e + 8 (16e + 8)n
K

(16e + 8)avio
finishing the proof. O

E.R, >
, otherwise,



