
Sparse Nonlinear Regression: Parameter Estimation under Nonconvexity

A. Proof of the Main Results
In this section, we lay out the proofs of the main results
presented in §3. We first establish the statistical rate of
convergence for the proposed estimator, and then show the
optimality of our procedure by deriving the minimax lower
bound.

A.1. Proof of Theorem 1

Proof. For any stationary point �β of the optimization prob-
lem in (1.2), by definition we have

∇L( �β) + λ · ξ = 0, where ξ ∈ ∂��β�1.

For notational simplicity, we denote �β − β∗ as δ. By defi-
nition, we have

�∇L( �β)−∇L(β∗),β − β∗� = �−λ · ξ −∇L(β∗), δ�.

We denote the support of β∗ as S , that is, S = {j : β∗
j �= 0}.

By writing ξ = ξS + ξSc we have

�∇L( �β)−∇L(β∗), �β − β∗�
= �−λ · ξSc − λ · ξS −∇L(β∗), δ�. (A.1)

Note that β∗
S = 0 and �ξSc , �βSc� = ��βSc�1 = �δSc�1. By

Hölder’s inequality, since �ξ�∞ ≤ 1, the right-hand side of
(A.1) can be bounded by

�∇L( �β)−∇L(β∗), �β − β∗�
≤ −λ�δSc�1 + λ�δS

��
1
+ �∇L(β)�∞�δ�1. (A.2)

Now we invoke Lemma 3 to bound the right hand side
of (A.2). In what follows, we condition on the event that
�∇L(β∗)�∞ ≤ Bσ ·

�
log d/n, which holds with proba-

bility at least 1− δ, where δ ≥ (2d)−1. By the definition of
λ, we have λ ≥ L1 · �∇L(β)�∞ with probability at least
1− δ. By (A.2) we have

�∇L( �β)−∇L(β∗), �β − β∗�
≤ −λ�δSc�1 + λ�δS�1 + L−1

1 λ�δ�1. (A.3)

Now we invoke Lemma 4 to establish a lower bound of the
left-hand side of (A.3). Combining (3.3), (A.3) and Lemma
4 we obtain that

0 ≤ a2δ� �Σδ ≤ −λ�δSc�1 + λ�δS�1 + µλ�δ�1
= −λ(1− µ)�δSc�1 + λ(1 + µ)�δS�1. (A.4)

where µ = L−1
1 + 3b

√
DL−1

2 ≤ 0.1. Hence it follows that��δSc�1 ≤ (1 + µ)/(1− µ)�δS�1 ≤ 1.23�δS�1.

Now we invoke the Lemma 5 to bound δ� �Σδ from below.
Under Assumption 1, we have

ρ+(k
∗)/ρ−(s

∗ + 2k∗) ≤ 1 + 0.5k∗/s∗.

Combining this inequality with Lemma 5 we obtain that

δ� �Σδ ≥
�
1− 1.23

√
0.5

�
· ρ−(s∗ + k∗) · �δI�22

≥ 0.1 · ρ−(s∗ + k∗) · �δI�22, (A.5)

where J is the set of indices of the largest k∗ entries of δSc

in absolute value and I = J ∪ S. Here the first inequality
of (A.5) follows from Lemma 5 and that S ⊂ I . Combining
(A.4) and (A.5) we obtain that

0.1 · ρ−(s∗ + k∗) · �δI�22 ≤ δ� �Σδ ≤ a−2λ(1 + µ)�δS�1
≤ 1.1 · a−2

√
s∗λ�δI�2,

which implies that �δI�2 ≤ 11/ρ−(s∗ + k∗) · a−2
√
s∗λ.

Note that by Lemma 5 we also have �δ�2 ≤ 2.23�δI�2.
Combining this inequality with the fact that �δSc�1 ≤
1.23�δS�1, we have

��β − β∗�1 = �δ�1 ≤ 2.23�δS�1 ≤ 2.23
√
s∗�δS�2

≤ 25/ρ−(s
∗ + k∗) · a−2s∗λ;

��β − β∗�2 = �δ�2 ≤ 2.23�δI�2
≤ 25/ρ−(s

∗ + k∗) · a−2
√
s∗λ.

Finally, to show that Algorithm 1 indeed catches a sta-
tionary point, we note that the acceptance criterion of
the Algorithm (Line 1) implies that φ(β(1)) ≤ φ(β(0))
where φ(β) = L(β) + λ�β�1. Moreover, for t = 2, we
also have φ(β(2)) ≤ max{φ(β(0)),φ(β(1))}. By induc-
tion, we conclude that for all t ≥ 1, φ(β(t)) ≤ φ(β(0)).
Therefore we have β(t) ∈ C :=

�
β ∈ Rd : �β�1 ≤

λ−1 · L(β(0)) + �β(0)�1
�
. Since set C is compact and the

loss function L is continuously differentiable, it is also Lip-
schitz on C. Therefore, by the convergence result of in
Theorem 1 of (Wright et al., 2009), we conclude that every
accumulation point of Algorithm 1 is a stationary point of
optimization problem (1.2).

A.2. Proof of Theorem 2

In what follows, inspired by (Raskutti et al., 2011), we apply
Fano’s method to derive the minimax risk of estimation for
the nonlinear regression model defined in (1.1).

Proof. Let M = M(δn) be the cardinality of a 2δn-
packing set of B0(s) with respect to the �2-metric where
δn will be specified later. We denote the elements of this
packing set as {β1, . . . ,βM}. For any estimator �β, let
ψ = argmini≤M ��β − βi�2, triangle inequality implies
that

2��β − βi�2 ≥ ��β − βi�2 + ��β − βψ�2
≥ �βi − βψ�2 ≥ 2δn for i �= ψ.



Sparse Nonlinear Regression: Parameter Estimation under Nonconvexity

Thus we conclude that

R∗
f (s, n, d) ≥ inf

ψ
sup

1≤i≤M
δ2n · Pβi(ψ �= i)

≥ inf
ψ

δ2n · PβU (ψ �= U),

where U is uniform distributed over {1, . . . , N}. We con-
sider the following data-generating process: For a contin-
uously differentiable function f with f �(u) ∈ [a, b], ∀u ∈
R, we first sample a random variable U uniformly over
1, . . .M , then generate data yi = f(x�

i β
U ) + �i. Fano’s

inequality implies that

P(ψ �= U) ≥ 1−
�
I(U ; y1, . . . , yn) + log 2

��
logN.

In what follows, we establish an upper bound for the mu-
tual information I(U ; y1, . . . , yn). For s ∈ {1, . . . , d}, we
define the high-dimensional sparse hypercube as Co(s) :=�
v ∈ {0, 1}d, �v�0 = s}. We define the Hamming distance

on C0(s) as ρH(v,v�) =
�d

i=1 1{vi �= v�i}. The following
lemma, obtained from (Rigollet et al., 2011), is an extension
of the Varhsamov-Gilbert lemma to C0(s).
Lemma 6 (Sparse Varshamov-Gilbert lemma). For any
two integers s and d satisfying 1 ≤ s ≤ d/8, there ex-
ist v1, . . . ,vM ∈ {0, 1}d with �vi�0 = s for 1 ≤ i ≤ M
such that

ρH(vi,vj) ≥ s/2 for all i �= j, and
log(M) ≥ s/8 · log[1 + d/(2s)].

By Lemma 6 there exist C� ⊂ C0 with |C�| ≥ exp
�
s/8 ·

log[1 + d/(2s)]
�

such that ρH(v,v�) ≥ s/2 for all v,v� ∈
C�. Then for β,β� ∈ C := δn ·

�
2/s · C�, we have

δ2n · 2/s · ρH(β,β�) ≤ �β − β��22
≤ 2(�β�22 + �β��22) ≤ 8δ2n,

which implies that δ2n ≤ �β − β��22 ≤ 8δ2n for all
β,β� ∈ C. By the convexity of mutual information, we have
I(U ; y1, . . . , yn) ≤ M−2

�
1≤m,m�≤M DKL(β

m,βm�
).

Since given β and f , yi ∼ N
�
f(x�

i β),σ
2
�
, direct com-

putation yields that

DKL(β
m,βm�

)

= 1/(2σ2)

n�

i=1

[f(x�
i β

m)− f(x�
i β

m�
)]. (A.6)

By mean-value theorem, (A.6) can be bounded by

DKL(β
m,βm�

)

≤ n · b2/(2σ2)(βm − βm�
)� �Σ(βm − βm�

)

≤ n · b2 · ρ+(2s)/(2σ2)�βm − βm��22
≤ 4nb2 · ρ+(2s) · δ2n/σ2,

where the second inequality follows from �βm − βm��0 ≤
2s. Therefore we conclude that I(U ; y1, . . . , yn) ≤ 4nb2 ·
ρ+(2s) · δ2n/σ2, which yields that

inf
ψ

Pβ(ψ �= U) ≥ 1− 4nb2 · ρ+(2s) · δ2n/σ2 + log 2

logM

≥ 1− 4nb2 · ρ+(2s) · δ2n/σ2 + log 2

s/8 · log[1 + d/(2s)]
.

Setting δ2n = σ2s log[1+d/(2s)]
96nb2ρ+(2s) , since s ≥ 4 and d ≥ 8s, we

conclude that the right-hand side is no less than 1/2. Now
we obtain the following minimax lower bound

R∗
f (s, n, d) ≥

σ2

192b2ρ+(2s)

s log[1 + d/(2s)]

n
.

This concludes the proof of Theorem 2.

B. Proof of Auxiliary Results
In this appendix, we provide the proofs of the auxiliary
lemmas appearing in the proof of the main results.

Proof of Lemma 3. By the definition of loss function L, for
j = 1, . . . , d, the j-th entry of ∇L(β∗) can be written as
∇jL(β

∗) = 1/n·�n
i=1 �if

�(x�
i β

∗)xij . Recall that �i’s are
i.i.d. centered sub-Gaussian random variables with variance
proxy σ2. Thus conditioning on x1, . . . ,xn, ∇jL(β

∗) is a
centered sub-Gaussian random variable with variance proxy
bounded by

σ2 · 1

n2

n�

i=1

f �(x�
i β

∗)2x2
ij ≤ σ2 · b2 · �Σj,j

�
n,

where �Σ = 1
n

�n
i=1 xix

�
i . Under Assumption Bounded-

Design(D), the variance proxy of ∇jL(β
∗) is bounded by

σ2 · b2 ·D/n. By the definition of variance proxy of sub-
Gaussian random variables, we have

P
���∇iL(β∗)

�� > σ · b · t ·
�
D/n

��x1, . . . ,xn

�

≤ 2 exp(−t2/2), ∀t > 0. (B.1)

Taking a union bound over j = 1, 2, . . . , d in for the left-
hand side of (B.1) we obtain that

P
���∇L(β∗)

��
∞ > σ · b · t

�
D/n

��x1, . . . ,xn

�

≤ 2 exp(−t2/2 + log d), ∀t > 0. (B.2)

By choosing t = C
√
log d in (B.2) for a sufficiently large C,

we conclude that there exist a constant B = C · b ·
√
D > 0

such that �∇L(β∗)�∞ ≤ Bσ
�
log d/n with probability at

least 1− δ, where we have δ ≤ (2d)−1.
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Proof of Lemma 4. By the definition of L(β), the gradient
∇L(β) is given by

∇L(β) = − 1

n

n�

i=1

[yi − f(x�
i β)]f

�(x�
i β)xi. (B.3)

Hence for ∇L(β∗), (B.3) can be reduced to

∇L(β∗) = − 1

n

n�

i=1

�if
�(x�

i β
∗)xi, (B.4)

where �1, . . . , �n are n i.i.d. realizations of the random
noise � in (1.1). For any β ∈ Rd, we denote η = β − β∗.
Recalling that yi = f(x�

i β
∗) + �i, Taylor expansion of

(B.3) implies that

∇L(β) = − 1

n

n�

i=1

�if
�(x�

i β)xi

+
1

n

n�

i=1

f �(x�
i
�β)f �(x�

i β)(x
�
i η)xi, (B.5)

where �β lies on the line segment between β∗ and β. Com-
bining (B.4) and (B.5) we have

�∇L(β)−∇L(β∗),β − β∗� = A1 +A2, (B.6)

where A1 and A2 are defined respectively as

A1 =
1

n

n�

i=1

f �(x�
i
�β)f �(x�

i β)(x
�
i η)

2 and

A2 =
1

n

n�

i=1

�
f �(x�

i β
∗)− f �(x�

i β)
�
(x�

i η)�i.

By the boundedness of f �, we can lower bound A1 by

A1 ≥ a2
1

n

n�

i=1

(x�
i η)

2 = a2η� �Ση. (B.7)

For the second part A2, by the sub-Gaussianity of the ran-
dom noise �i’s,

�
f �(x�

i β
∗)− f �(x�

i β)
�
· (x�

i η) · �i

is a centered sub-Gaussian random variable with variance
proxy

σ2[f ��x�
i β

∗�− f ��x�
i β

�
]2 · (x�

i η)
2 ≤ 4σ2b2(x�

i η)
2.

Therefore we conclude that A2 is centered and sub-Gaussian
with variance proxy bounded by

4b2n−2σ2
n�

i=1

(x�
i η)

2 = 4b2σ2n−1η� �Ση.

By the tail bound for sub-Gaussian random variables, we
obtain that for any x > 0,

P
�
|A2| ≥ x

�
≤ 2 exp(−x2/C),

where C = 8b2σ2n−1η� �Ση. With probability at least 1−
(2d)−1, it holds that

A2 ≥
�

C · log(4d) ≥ −3bσ
�

log d/n

�
η� �Ση

≥ −3bσ
�

D log d/n�η�1, (B.8)

where the last inequality is derived from Hölder’s inequality
η� �Ση ≤ ��Σ�∞�η�21 ≤ D�η�21. Therefore combining
(B.6), (B.7) and (B.8) with probability at least 1− (2d)−1,
we have

�∇L(β)−∇L(β∗),β − β∗�
≥ a2η� �Ση − 3bσ

�
D log d/n�η�1.

This concludes the proof of Lemma 4.

Proof of Lemma 5. Recall that J is the set of indices of the
largest k∗ entries of ηSc in absolute value and let I = J∪S.
The following Lemma establishes a lower-bound on η� �Ση.
Lemma 7. Let Σ ∈ Rd×d be a positive semi-definite ma-
trix and ρ−(k) and ρ+(k) be its k-sparse eigenvalues. Sup-
pose that for some integer s and k, ρ−(s + 2k) > 0. For
any v ∈ Rd, let F be any index set of size d − s, that is,
|Fc| = s. We let J be the set of indices of the k largest
component of vFc in absolute value and let I = Fc ∪ J .
Then we have

v�Σv ≥ρ−(s+ k) ·
�
�vI�2−

�
ρ+(k)/ρ−(s+ 2k)− 1 · �vF�1/

√
k
�
· �vI�2.

By Assumption 1, ρ−(s∗ + 2k∗) > 0. Combining Lemma
7 with F = Sc and that �ηSc�1 ≤ γ�ηS�1 ≤ γ

√
s�ηS�2

together yield inequality (6.5).

For the second part of the lemma, by the definition of J we
obtain that

�ηIc�∞ ≤ �ηJ �1
�
k∗ ≤ �ηSc�1

�
k∗ ≤ γ/k∗�ηS�1,

hence by Hölder’s inequality we have

�ηIc�2 ≤ �ηIc�1/21 �ηIc�1/2∞

≤ (γ/k∗)1/2�ηS�1/21 �ηIc�1/21

≤ γk∗−1/2 · �ηS�1,
where we use the fact that Ic ⊂ Sc. Thus it holds that

�ηIc�2 ≤ γ
�

s∗/k∗ · �ηS�2 ≤ γ · �ηI�2 and (B.9)��η
��
2
≤ (1 + γ) · �ηI�2. (B.10)

Thus we conclude the proof of Lemma 5.
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Proof of Lemma 7. Without loss of generality, we assume
that Fc = {1, . . . , s}. We also assume that for v ∈
Rd,when j > s, vj is arranged in descending order of
|vj |. That is, we rearrange the components of v such that
|vj | ≥ |vj+1| for all j greater than s. Let J0 = {1, . . . , s}
and Ji = {s+(i− 1)k+1, . . . ,min(s+ ik, d)} for i ≥ 1.
By definition, we have J = J1 and I = J0∪J1. Moreover,
we have �vJi�∞ ≤ �vJi−1�1

�
k when i ≥ 2 because of

the descending order of |vj | for j > s. Then we further
have

�
i≥2 �vJi

�∞ ≤ �vF�1
�
k.

We define the restricted correlation coefficients of Σ as

π(s, k) := sup

�
v�
I ΣvJ �vI�2

v�
I ΣvI�vJ �∞

: I ∩ J = ∅,

|I| ≤ s, |J | ≤ k,v ∈ Rd

�
.

As shown in (Zhang, 2010), if ρ−(s+ k) > 0 we have

π(s, k) ≤
√
k

2
·
�
ρ+(k)/ρ−(s+ k)− 1. (B.11)

Then by the definition of π(s+ k, k) we obtain
��v�

I ΣvJi

��≤ π(s+ k, k) ·
�
v�
I ΣvI

�
· �vJi

�∞
�
�vI�2.

Thus we have the following upper bound for
��v�

I ΣvIc

�� :
��v�

I ΣvIc

�� ≤
�

i≥2

��v�
I ΣvJi

��

≤ π(s+ k, k) · �vI�−1
2

�
v�
I ΣvI

��

i≥2

�vJi
�∞

≤ π(s+ k, k) · �vI�−1
2

�
v�
I ΣvI

�
�vF�1

�
k.

(B.12)

Because v�Σv ≥ v�
I ΣvI+2v�

I ΣvIc , by (B.12) we have

v�Σv

≥ v�
I ΣvI − 2π(s+ k, k)�vI�−1

2

�
v�
I ΣvI

�
�vF�1

�
k

=
�
v�
I ΣvI

��
1− 2π(s+ k, k)�vI�−1

2 �vF�1
�
k
�
.

(B.13)

Combining (B.13), the fact that v�
I ΣvI ≥ ρ−(s + k) ·

�vI�22 and (B.11) for π(s+ k, k), we conclude the proof of
Lemma 7.


