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A. Proof of the Main Results
In this section, we lay out the proofs of the main results
presented in §3. We first establish the statistical rate of
convergence for the proposed estimator, and then show the
optimality of our procedure by deriving the minimax lower
bound.

A.1. Proof of Theorem 1

Proof. For any stationary point b� of the optimization prob-
lem in (1.2), by definition we have

rL(b�) + � · ⇠ = 0, where ⇠ 2 @kb�k
1

.

For notational simplicity, we denote b� � �⇤ as �. By defi-
nition, we have

hrL(b�)�rL(�⇤
),� � �⇤
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We denote the support of �⇤ as S , that is, S = {j : �⇤
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By writing ⇠ = ⇠S + ⇠Sc we have
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Note that �⇤
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Hölder’s inequality, since k⇠k1  1, the right-hand side of
(A.1) can be bounded by
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Now we invoke Lemma 3 to bound the right hand side
of (A.2). In what follows, we condition on the event that
krL(�⇤

)k1  B� ·

p
log d/n, which holds with proba-

bility at least 1� �, where � � (2d)�1. By the definition of
�, we have � � L
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· krL(�)k1 with probability at least
1� �. By (A.2) we have
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Now we invoke Lemma 4 to establish a lower bound of the
left-hand side of (A.3). Combining (3.3), (A.3) and Lemma
4 we obtain that
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where µ = L�1

1

+ 3b
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Now we invoke the Lemma 5 to bound �> b⌃� from below.
Under Assumption 1, we have
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Combining this inequality with Lemma 5 we obtain that
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where J is the set of indices of the largest k⇤ entries of �Sc

in absolute value and I = J [ S. Here the first inequality
of (A.5) follows from Lemma 5 and that S ⇢ I . Combining
(A.4) and (A.5) we obtain that
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Note that by Lemma 5 we also have k�k
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Combining this inequality with the fact that k�Sc
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Finally, to show that Algorithm 1 indeed catches a sta-
tionary point, we note that the acceptance criterion of
the Algorithm (Line 1) implies that �(�(1)

)  �(�(0)

)
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. Moreover, for t = 2, we
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. Since set C is compact and the

loss function L is continuously differentiable, it is also Lip-
schitz on C. Therefore, by the convergence result of in
Theorem 1 of [51], we conclude that every accumulation
point of Algorithm 1 is a stationary point of optimization
problem (1.2).

A.2. Proof of Theorem 2

In what follows, inspired by [39], we apply Fano’s method
to derive the minimax risk of estimation for the nonlinear
regression model defined in (1.1).

Proof. Let M = M(�n) be the cardinality of a 2�n-
packing set of B

0

(s) with respect to the `
2

-metric where
�n will be specified later. We denote the elements of this
packing set as {�1, . . . ,�M

}. For any estimator b�, let
 = argminiM k

b� � �i
k

2

, triangle inequality implies
that

2k

b� � �i
k

2

� k

b� � �i
k

2

+ k

b� � � k
2

� k�i
� � k

2

� 2�n for i 6=  .



Sparse Nonlinear Regression: Parameter Estimation under Nonconvexity

Thus we conclude that

R

⇤
f (s, n, d) � inf

 
sup

1iM
�2n · P�i

( 6= i)

� inf

 
�2n · P�U ( 6= U),

where U is uniform distributed over {1, . . . , N}. We con-
sider the following data-generating process: For a contin-
uously differentiable function f with f 0

(u) 2 [a, b], 8u 2

R, we first sample a random variable U uniformly over
1, . . .M , then generate data yi = f(x>

i �
U
) + ✏i. Fano’s

inequality implies that

P( 6= U) � 1�

⇥
I(U ; y

1

, . . . , yn) + log 2

⇤�
logN.

In what follows, we establish an upper bound for the mu-
tual information I(U ; y

1

, . . . , yn). For s 2 {1, . . . , d}, we
define the high-dimensional sparse hypercube as Co(s) :=�
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following lemma, obtained from [40], is an extension of the
Varhsamov-Gilbert lemma to C
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Lemma 6 (Sparse Varshamov-Gilbert lemma). For any
two integers s and d satisfying 1  s  d/8, there ex-
ist v
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, . . . ,vM 2 {0, 1}d with kvik0 = s for 1  i  M
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By mean-value theorem, (A.6) can be bounded by
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Setting �2n =

�2s log[1+d/(2s)]
96nb2⇢+(2s) , since s � 4 and d � 8s, we

conclude that the right-hand side is no less than 1/2. Now
we obtain the following minimax lower bound
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.

This concludes the proof of Theorem 2.

B. Proof of Auxiliary Results
In this appendix, we provide the proofs of the auxiliary
lemmas appearing in the proof of the main results.

Proof of Lemma 3. By the definition of loss function L, for
j = 1, . . . , d, the j-th entry of rL(�⇤

) can be written as
rjL(�⇤

) = 1/n·
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0
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Gaussian random variables, we have

P
���
riL(�

⇤
)

�� > � · b · t ·
p
D/n

��
x

1

, . . . ,xn

�
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Taking a union bound over j = 1, 2, . . . , d in for the left-
hand side of (B.1) we obtain that

P
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By choosing t = C
p

log d in (B.2) for a sufficiently large C,
we conclude that there exist a constant B = C · b ·

p

D > 0

such that krL(�⇤
)k1  B�
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log d/n with probability at

least 1� �, where we have �  (2d)�1.
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Proof of Lemma 4. By the definition of L(�), the gradient
rL(�) is given by

rL(�) = �

1
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Hence for rL(�⇤
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where ✏
1

, . . . , ✏n are n i.i.d. realizations of the random
noise ✏ in (1.1). For any � 2 Rd, we denote ⌘ = � � �⇤.
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where e� lies on the line segment between �⇤ and �. Com-
bining (B.4) and (B.5) we have
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For the second part A
2

, by the sub-Gaussianity of the ran-
dom noise ✏i’s,

�
f 0
(x

>
i �

⇤
)� f 0

(x

>
i �)

 
· (x

>
i ⌘) · ✏i

is a centered sub-Gaussian random variable with variance
proxy

�2

[f 0�
x

>
i �

⇤�
� f 0�

x

>
i �

�
]

2

· (x

>
i ⌘)

2

 4�2b2(x>
i ⌘)

2.

Therefore we conclude that A
2

is centered and sub-Gaussian
with variance proxy bounded by

4b2n�2�2

nX

i=1

(x

>
i ⌘)

2

= 4b2�2n�1⌘> b
⌃⌘.

By the tail bound for sub-Gaussian random variables, we
obtain that for any x > 0,
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where the last inequality is derived from Hölder’s inequality
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This concludes the proof of Lemma 4.

Proof of Lemma 5. Recall that J is the set of indices of the
largest k⇤ entries of ⌘Sc in absolute value and let I = J[S.
The following Lemma establishes a lower-bound on ⌘> b

⌃⌘.
Lemma 7. Let ⌃ 2 Rd⇥d be a positive semi-definite ma-
trix and ⇢�(k) and ⇢

+

(k) be its k-sparse eigenvalues. Sup-
pose that for some integer s and k, ⇢�(s + 2k) > 0. For
any v 2 Rd, let F be any index set of size d � s, that is,
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c
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Thus we conclude the proof of Lemma 5.
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Proof of Lemma 7. Without loss of generality, we assume
that F

c
= {1, . . . , s}. We also assume that for v 2

Rd,when j > s, vj is arranged in descending order of
|vj |. That is, we rearrange the components of v such that
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Because v>
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Combining (B.13), the fact that v>
I ⌃vI � ⇢�(s + k) ·

kvIk
2

2

and (B.11) for ⇡(s+ k, k), we conclude the proof of
Lemma 7.


