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Abstract
We study parameter estimation for sparse nonlin-
ear regression. More specifically, we assume the
data are given by y = f(x>β∗) + ε, where f
is nonlinear. To recover β∗, we propose an `1-
regularized least-squares estimator. Unlike classi-
cal linear regression, the corresponding optimiza-
tion problem is nonconvex because of the nonlin-
earity of f . In spite of the nonconvexity, we prove
that under mild conditions, every stationary point
of the objective enjoys an optimal statistical rate
of convergence. Detailed numerical results are
provided to back up our theory.

1. Introduction
We study a family of sparse nonlinear regression models.
Let β∗ = (β∗1 , . . . , β

∗
d)> ∈ Rd be the sparse parameter

vector of interest. We consider the model

y = f(x>β∗) + ε, (1.1)

where y ∈ R is a response variable, x ∈ Rd is the covariate
and ε ∈ R is the exogenous noise. When f is the iden-
tity function, model (1.1) reduces to the well studied linear
model. Given independent and identically distributed obser-
vations {yi,xi}ni=1, our goal is to estimate β∗ even when
d� n.

We can view (1.1) as a perceptron with noise, which is the
basic building block of a feed forward neural network [41].
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Establishing the theoretical guarantees of the estimation
in (1.1) may provide insight on more complicated neural
networks. Our model is also inspired by the nonlinear sparse
recovery problems [2, 5, 7] which aim to recover a sparse
parameter from a nonlinear system.

1.1. Main Results

Assuming f is monotonic, a straightforward way to estimate
β∗ is to solve a sparse linear regression problem [18] us-
ing the transformed data {f−1(yi),xi}ni=1. However, this
approach works well only in the noiseless case with ε = 0.
Otherwise, it results in inaccurate parameter estimation and
high prediction error due to the inverse operation. In this
paper, we propose estimating the parameter β∗ by solving
the following `1-regularized least-squares problem:

minimize
β∈Rd

1

n

n∑
i=1

[
yi − f(x>i β)

]2
+ λ‖β‖1, (1.2)

where λ is a regularization parameter and ‖ · ‖1 is the vector
`1-norm. Unlike the linear model for which (1.2) is a con-
vex optimization problem, in general settings (1.2) could be
highly nonconvex due to the nonlinearity of f , which pre-
vents us from obtaining the global optimum. The existence
of f also prevents us from having the restricted strongly
convex property of the loss function.

In spite of the challenge of nonconvexity, we prove that any
stationary point β̂ of (1.2) enjoys optimal statistical rates
of convergence under suitable conditions, i.e., with high
probability∥∥β̂ − β∗∥∥

2
≤ C1 ·

√
s∗ log d/n and∥∥β̂ − β∗∥∥

1
≤ C2 · s∗

√
log d/n,
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where s∗ is the number of nonzero entries of β∗ and C1, C2

are some absolute constants which do not depend on n, d or
s∗. The statistical rates of convergence cannot be improved
even when f is the identity function. In addition, we require
a scaling of n = O(s∗ log d) samples to obtain a vanish-
ing error, which is also needed for linear sparse recovery
problems [18]. Next, we provide an efficient gradient-based
algorithm that provably converges to a stationary point. Our
method is iterative and consist of soft-thresholding after a
gradient descent step. This approach can be viewed as a
generalization of the ISTA algorithm [6] to the nonlinear
setting.

1.2. Related Work

The model in (1.1) is closely related to the single index
model, which assumes (y,x) satisfy y = f(x>β∗) + ε
with an unknown f . The single index model is well studied
in low dimensional settings where d � n. See, e.g., [16,
17, 21–23, 34, 44, 52, 53] and references therein. They
mostly consider M -estimators that simultaneously estimate
f and β∗. However, these M -estimators are defined as the
global optima of nonconvex minimization problems which
are intractable to obtain. In high-dimensional settings where
β∗ is sparse, [3] establish PAC-Bayesian analysis for sparse
single index models. [37, 38] propose marginal regression
and generalized Lasso estimators which attain fast statistical
rates of convergence. Nevertheless, the flexibility of the
unknown link function f comes at a price. In detail, [37,
38] require x to be exactly Gaussian for their methods to
succeed, even if f is known a priori. Also, unknown f
raises identifiability issues, since the magnitude of β∗ can
be incorporated into f . As a result, these methods only
estimate the direction of β∗.

Another related line of work is sufficient dimension reduc-
tion, for which we aim to recover a subspace U such that
y only depends on the projection of x onto U . Both single
index model and our problem can be viewed as special cases
of the framework in which U is a one-dimensional subspace.
See [14, 15, 28–30] and the references therein. Most works
in this direction use spectral methods, which also rely on the
Gaussian assumption and can only estimate the direction of
β∗. In comparison, we assume f is known. In this setting,
we allow x to follow more general distributions and can
directly estimate β∗. [26, 27] propose iterative algorithms
that alternatively estimate f and β∗ based on the isotonic re-
gression in the setting with d� n. However, their analysis
focuses on generalization error instead of estimation error,
which is the primary goal in this paper.

Our work is also related to problems of phase retrieval where
the goal is to recover a signal β∗ ∈ Cd from the magnitude
of its linear measurements contaminated by random noise.
More specifically, the model of phase retrieval is given by

y = |x>β|2+ε. For high-dimensional settings, this problem
is extensively studied under noisy or noiseless settings. See,
e.g., [8, 11, 12, 19, 20, 24, 31, 35, 36, 42, 43, 47, 50]. These
works show that a high dimensional signal can be accurately
estimated up to global phase under restrictive assumptions
on x, e.g., x is Gaussian or certain classes of measurements.
However, our work considers general measurements. Note
that phase retrieval does not fall in the model under (1.1)
because it uses a quadratic function, which is not monotonic.
See §4 for a more detailed discussion.

1.3. Main Contribution

Our contribution is twofold. First, we propose an `1-
regularized least-squares estimator for parameter estimation.
We prove that every stationary point of the optimization
problem in (1.2) converges to the true parameter, which
explains the empirical success of regularized least-squares
in the presence of nonlinear transforms. In the noiseless
setting, as long as the number of samples is proportional
to s∗ log d, we are able to exactly recover β∗. To the best
of our knowledge, this is the first parameter estimation re-
sult for the model (1.1) in high dimensional settings that
does not rely on the normality of x, and recovers both the
magnitude and direction of β∗. Our analysis for the sta-
tionary points of nonconvex optimization problems is of
independent interest. Second, we establish the minimax rate
of parameter estimation for the model (1.1), which estab-
lishes the minimax optimality of the stationary points of the
proposed optimization problem in (1.2).

Organization of the rest of this paper In §2 we present
our method for parameter estimation. We lay out the theory
in §3. We discuss the connection to prior work with more
details in §4. We corroborate our theoretical results with
thorough numerical results in §5. In addition, we sketch the
proof the statistical rates in §6. We conclude the paper in
§7.

2. High-dimensional Estimation
In this section, we introduce the proposed methods for pa-
rameter estimation. In addition, we present the intuition
behind our methods and compare our estimation procedures
with the one that inverts the nonlinear function f directly.

Recall that we observe {(yi,xi)}ni=1 satisfying yi =
f(x>i β

∗) + εi. We assume the function f is monotonic
and continuously differentiable. We define the least-square
loss function as

L(β) =
1

2n

n∑
i=1

[yi − f(x>i β)]2. (2.1)

We assume β∗ is sparse and estimate it by solving the `1-
regularized optimization problem in (1.2).
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Due to the nonlinearity of f , L(β) can be nonconvex. As
a result, we can only find a stationary point β̂ satisfying
∇L
(
β̂
)

+ λ · ξ = 0, where ξ ∈ ∂‖β̂‖1 and ∇L(β) is the
gradient of L(β). To obtain a stationary point, we apply
the proximal gradient method, which generates an iterative
sequence {β(t), t ≥ 0} satisfying

β(t+1) = argmin
β∈Rd

{
〈∇L(β(t)),β − β(t)〉+

αt/2 · ‖β − β(t)‖22 + λ‖β‖1
}
, (2.2)

where 1/αt > 0 is the stepsize at the t-th iteration. In our
setting,∇L(β(t)) is given by

∇L(β(t)) = − 1

n

n∑
i=1

[yi − f(x>i β
(t))]f ′(x>i β

(t))xi.

We denote u(t) is given by u(t) := β(t) − 1/αt · ∇L(β(t)).
then (2.2) has an explicit solution given by

β
(t+1)
i = soft(u(t)i , λ/αt) for 1 ≤ i ≤ d, (2.3)

where soft(u, a) := sign(u) max
{
|u| − a, 0

}
is the soft-

thresholding operator.

The resulting algorithm is given in Algorithm 1, which is an
application of the SpaRSA method proposed by [51] to our
nonconvex problem. The main step is given in (2.3), which
performs a soft-thresholding step on a gradient-descent up-
date. This algorithm reduces to ISTA [6] when f is the iden-
tity. For nonlinear sparse recovery problems, this technique
is also similar to the thresholded Wirtinger flow algorithm
proposed for phase retrieval [8, 12].

To pick a suitable αt, we use the line search procedure de-
scribed in Algorithm 2. It iteratively increases αt by a factor
of η to ensure that β(t+1) satisfies the acceptance criterion,
which guarantees sufficient decrease of the objective func-
tion. To choose the initial αt at the beginning of each line
search iteration, we use the Barzilai-Borwein (BB) spectral
method [4] in Algorithm 2, which guarantees that the initial
value of each stepsize αt lies in the interval [αmin, αmax].
Using the theory of [51], we establish the numerical con-
vergence of the iterative sequence to a stationary point of
(1.2) . However, it is challenging to establish the statistical
properties of the stationary points. Our theory in §3 shows
that, surprisingly, any stationary point enjoys satisfactory
statistical guarantees. Consequently, Algorithm 1 yields a
stationary point that is desired for parameter estimation.

When f is known, it seems tempting to apply linear com-
pressed sensing procedures to the inverted data {zi,xi}
where zi = f−1(yi). If f is linear, say f(u) = au+ b, then
f−1(u) = a−1(u− b). In this case we have z = f−1(y) =
x>β∗ + a−1ε, which is exactly a linear model. However,
this method does not work well for general nonlinear f .

Algorithm 1 Proximal gradient algorithm for solving the
`1-regularized problem in (1.2).

1: Input: regularization parameter λ > 0, update factor
η > 1, constants ζ > 0, αmin, αmax with 0 < αmin <
1 < αmax, integerM > 0, and φ(β) := L(β)+λ‖β‖1

2: Initialization: set the iteration counter t ← 0 and
choose β(0)∈Rd

3: Repeat
4: Choose stepsize αt according to Algorithm 2
5: Repeat
6: u(t) ← β(t) + 1

nαt
·
∑n
i=1

[
yi −

f
(
x>i β

(t)
)]
f ′
(
x>i β

(t)
)
xi.

7: β
(t+1)
i ← soft(u(t)i , λ/αt) for 1 ≤ i ≤ d.

8: αt ← η · αt
9: Until β(t+1) satisfies the acceptance criterion:

10: φ(β(t+1)) ≤ max
{
φ(β(j))− ζ ·αt/2 · ‖β(t+1)−

β(t)‖22 : max(t−M, 0) ≤ j ≤ t
}

11: Update the iteration counter t← t+ 1
12: Until ‖β(t) − β(t−1)‖2/‖β(t)‖2 is sufficiently small
13: Output: β̂ ← β(t)

Algorithm 2 The Barzilai-Borwein (BB) spectral approach
for choosing αt in Line 1 of Algorithm 1.

1: Input: the iteration counter t, δ(t) = β(t)−β(t−1) and
g(t) = ∇L(β(t))−∇L(β(t−1))

2: if t = 0 then
3: Output: αt = 1
4: else
5: Output: αt = 〈δ(t), g(t)〉

/
〈δ(t), δ(t)〉 or αt =

〈g(t), g(t)〉
/
〈δ(t), g(t)〉

6: end if

To see this, denote z = f−1(y) = f−1[f(x>β∗) + ε] and
µ = E[z|x]− x>β∗. Then we have model

z = x>β∗ + µ+ ξ, (2.4)

where ξ is the remaining term that satisfies E[ξ|x] = 0.
Note that both µ and ξ depend on β∗ implicitly. When
treating (2.4) as a sparse linear model with intercept, we
discard such dependency and thus incur large estimation
error. We numerically compare the proposed method with
the linear approach that inverts f in §5 and show that our
approach outperforms the linear framework.

3. Theoretical Results
In this section, we present the main theoretical results. The
statistical model is defined in (1.1). Hereafter we assume
that ε is sub-Gaussian with variance proxy σ2. By saying
that a random vector z ∈ Rk is sub-Gaussian with zero
mean and variance proxy τ2 ≥ 0, we mean that E[z] = 0
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and

E[exp(θ>z)] ≤ exp(‖θ‖22τ2/2) for all θ ∈ Rk.

3.1. Theory of Parameter Estimation

Before presenting the main results for parameter estima-
tion, we first state the following assumptions on Σ̂ =
n−1

∑n
i=1 xix

>
i , which are standard for sparse linear re-

gression problems with fixed design.

Assumption 1. Sparse-Eigenvalue(s∗, k∗). For k ∈
{1, . . . , d}, we denote the k-sparse eigenvalues of Σ̂ as
ρ−(k) and ρ+(k) respectively, which are defined as

ρ−(k) := inf
{
v>Σ̂v : ‖v‖0 ≤ k, ‖v‖2 = 1

}
and

ρ+(k) := sup
{
v>Σ̂v : ‖v‖0 ≤ k, ‖v‖2 = 1

}
.

We assume that, for s∗ = ‖β∗‖0, there exists a k∗ ∈ N such
that k∗ ≥ 2s∗ and

ρ+(k∗)/ρ−(2k∗ + s∗) ≤ 1 + 0.5k∗/s∗. (3.1)

The condition ρ+(k∗)/ρ−(2k∗ + s∗) ≤ 1 + 0.5k∗/s∗ re-
quires that the eigenvalue ratio ρ+(k)/ρ−(2k + s∗) grows
sub-linearly in k. This condition, commonly referred to as
sparse eigenvalue condition, is standard in sparse estimation
problems and has been studied by [56]. This condition is
weaker than the well-known restricted isometry property
(RIP) in compressed sensing [10], which states that there
exists a constant δ ∈ (0, 1) and integer s ∈ {1, . . . , d} such
that for all s-sparse v ∈ Rd, we have

(1− δ)‖v‖22 ≤ v>Σ̂v ≤ (1 + δ)‖v‖22. (3.2)

Comparing (3.1) and (3.2), we see that (3.1) holds with
k∗ = (s − s∗)/2 if the RIP condition holds with s ≥ 5s∗

and δ = 1/3. As is shown in [49], RIP holds with high
probability for sub-Gaussian random matrices. Therefore
Assumption 1 holds at least when x1, . . . ,xn are i.i.d. sub-
Gaussian, which contains many well-known distributions as
special cases.

We note that although Assumption 3.1 holds since it does
not depend on the nonlinear transfmration f , the restricted
strong convexity (RSC) condition defined in [32, 33] on the
loss function L(β) does not directly hold in general in our
setting since L(β) depends on the nonlinear transformation
f .

In addition to the sparse eigenvalue assumption, we need a
regularity condition, which states that the elements of Σ̂ are
uniformly bounded.

Assumption 2. Bounded-Design(D). We assume there ex-
ists an absolute constant D that does not depends on n, d,
or s∗ such that ‖Σ̂‖∞ ≤ D, where ‖ · ‖∞ is the matrix
elementwise `∞-norm.

If the population version of Σ̂, i.e., Σ := E(xx>),
has bounded elements and x has sub-Gaussian or sub-
exponential tails, then by concentration inequalities we can
prove that Assumption 2 holds with high probability with
D = 2‖Σ‖∞. We verify this assumption for sub-Gaussian
x in the appendix. This assumption is generally unneces-
sary for high dimensional linear regression. However, it is
required in our setting where it is used to control the effect
of the nonlinear transform.

We note that we do not make any further assumptions except
Assumptions 1 and 2 on the distribution of x for the theory
of parameter estimation to hold. These two assumptions are
shown to be true when x is sub-Gaussian.

We are now ready to present our main theorem for parame-
ter estimation, which states that any stationary point of the
`1-regularized optimization problem enjoys optimal statisti-
cal rates of convergence and that Algorithm 1 successfully
converges to a stationary point.

Theorem 1. We assume that the univariate function f sat-
isfies f(0) = 0 and is continuously differentiable with
f ′(x) ∈ [a, b],∀x ∈ R for some 0 < a < b. We further
assume that Assumptions 1 and 2 hold. Then there exists
a constant B such that ‖∇L(β∗)‖∞ ≤ Bσ ·

√
log d/n

with probability tending to one. Suppose we choose the
regularization parameter λ in (1.2) as

λ = Cσ
√

log d/n with C ≥ max {L1B,L2}, (3.3)

where L1 and L2 satisfy L−11 + 3b
√
DL−12 ≤ 0.1. Then for

any stationary point β̂ satisfying∇L
(
β̂
)

+ λ · ξ = 0 with
ξ ∈ ∂‖β̂‖1, it holds with probability at least 1− d−1 that

‖β̂ − β∗‖2 ≤ 25/ρ−(k∗ + s∗) · a−2
√
s∗λ; (3.4)

‖β̂ − β∗‖1 ≤ 25/ρ−(k∗ + s∗) · a−2s∗λ. (3.5)

Furthermore, Algorithm 1 attains a stationary point with the
statistical rates in (3.4).

By our discussion under Assumption 1, we can take k∗ =
Cs∗ for some constant C > 0. Then plugging (3.3) into
(3.4), we obtain the rate of

√
s∗ log d/n in `2-norm and

the rate of s∗
√

log d/n in `1-norm. Similar results are also
established for sparse linear regression, and more gener-
ally, high-dimensional generalized linear models [9, 25, 55].
These rates are optimal in the sense that they cannot be im-
proved even if f equals to the identity. Note that the lower
bound a of f ′ shows up in the statistical rates of convergence
in (3.4). If a is close to zero, we obtain a large statistical
error. To see the intuition, we consider a worst case where f
is constant, i.e., a = 0. Then it is impossible to consistently
estimate β∗, since in this case the observations {yi,xi}ni=1

provide no information on β∗.
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The statistical rates of convergence are proportional to the
noise level σ, which implies that the proposed method ex-
actly recovers β∗ in the noiseless setting. In the noisy
case, by (3.4), to get ε accuracy of estimating β∗ in
`2-norm with high probability, the sample complexity is
n = O(ε−2s∗ log d), which is of the same order as that of
high-dimensional linear models.

3.2. Minimax Lower Bound

To understand the optimality of the estimation result, we
study the minimax lower bound of parameter estimation
in our model, which reveals the fundamental limits of the
estimation problem. We define the minimax risk as

R∗f (s, n, d) = inf
β̂

sup
β∈B0(s)

Eβ‖β̂ − β‖22, (3.6)

where the expectation is taken over the probability model
in (1.1) with parameter β and B0(s) :=

{
β ∈ Rd : ‖β‖0 ≤

s
}

. Here the supremum is taken over all s-sparse parame-
ters and the infimum is taken over all estimators β̂ based on
samples {(yi,xi)}ni=1. We assume f is continuously differ-
entiable with f ′(u) ∈ [a, b],∀u ∈ R. The following theo-
rem gives a lower bound on the minimax risk Rf (s, n, d),
which implies the optimality of the proposed estimator.

Theorem 2. For integer s and d satisfying 1 ≤ s ≤ d/8,
the minimax risk defined in (3.6) has the following lower
bound

R∗f (s, n, d) ≥ σ2

192b2ρ+(2s)

s log[1 + d/(2s)]

n
. (3.7)

By Theorem 2, if we consider a, b as constants and assume
that k∗/s∗ is bounded, then the `2-statistical rate of conver-
gence of β̂ in (3.4) matches the minimax lower bound in
(3.7) in terms of order. This establishes the optimality of
the proposed estimator.

4. Connection to Prior Work
The model we consider is closely related to the single index
model where the function f is unknown. Both of these two
models fall in the framework of sufficient dimension reduc-
tion with a one-dimensional subspace U [14, 15, 28–30]. In
low dimensional settings, most works in this direction use
spectral methods, which rely on the Gaussian assumption
and can only estimate θ∗ = β∗‖β∗‖−12 because the norm
of β∗ is not identifiable when f is unknown. As introduced
in [30], many moment based sufficient dimension reduction
methods can be stated as a generalized eigenvalue problem
Mnθi = λiNnθi for i = 1, . . . , d, where Mn and Nn are
symmetric matrices computed from the data; θ1, . . . ,θd are
generalized eigenvectors such that θ>i Nnθj = 1{i=j} and
λ1 ≥ · · · ≥ λd are the generalized eigenvalues. In addition,

it is required that Mn and Nn are positive semidefinite and
positive definite, respectively. Here Mn and Nn are the
sample versions of the corresponding population quantities
M and N. For example, in sliced inverse regression [28],
we have M = Cov{E[x− E(x)|y]

}
and N = Cov(x) and

Mn and Nn are their population analogs. When U is one-
dimensional, θ∗ corresponds to the generalized eigenvector
with the largest eigenvalue. In low dimensional settings,
[30] showed that θ∗ can be estimated by the following opti-
mization problem:

maximize
θ∈Rd

θ>Mnθ subject to θ>Nnθ. (4.1)

Since the works in this direction all require the matrix Nn,
which is the sample covariance matrix of x in most cases,
to be invertible, such methods cannot be generalized to
high-dimensional settings where Nn is not invertible.

For high-dimensional single index models, [38] proposes
an estimator by projecting n−1

∑n
i=1 yixi onto a fixed star-

shaped closed subset K of Rd. Similarly, [37] propose a
least-squares estimator with a geometric constraint:

minimize

n∑
i=1

(x>i θ − yi)2 subject to θ ∈ K. (4.2)

Both of these methods rely on the assumption that xi is
Gaussian to have good estimation of E(y · x). Under the
Gaussian assumption, we achieve the same statistical rate,
which is optimal. When x is not Gaussian, as shown in
[1], their methods will have some extra terms in the error
bound that may or may not tend to zero. Our method, how-
ever, works when x has a general distribution with optimal
statistical rates of convergence.

5. Numerical Experiments
In this section, we evaluate the finite sample performance
of parameter estimation on both simulated data and a real-
world dataset.

For parameter estimation, we compute the `2-error ‖β̂ −
β∗‖2, where β̂ is the solution of Algorithm 1. In addition,
we compare our method with the linear approach that inverts
the nonlinear function. For the linear framework we apply
the `1-regularized regresion (Lasso) [45].

5.1. Simulated Data

Throughout this section, we sample independent data from
model (1.1) with ε ∼ N(0, 1) and x ∼ N(0,Σ) where Σ ∈
Rd×d is a Toeplitz matrix with Σjk = 0.95|j−k|. The sparse
parameter vector β∗ ∈ Rd is set to have nonzero values in
the first s∗ entries. That is, β∗j 6= 0 for 1 ≤ j ≤ s∗ and
β∗j = 0 otherwise. In addition, we consider the nonlinear
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function f(x) = 2x + cos(x). In this case the derivative
f ′(·) is bounded by a = 1 and b = 4.

For parameter estimation, we compare the `2-error ‖β̂ −
β∗‖2 with

√
s∗ log d/n under two settings: (i) we fix

d = 256, s∗ = 6, 8, or 10, and vary n, and (2) fix s∗ = 10,
d = 128, 256 or 512, and vary n. For the parameter β∗, the
first s∗ entries are sampled independently from the uniform
distribution on the interval [0, 2]. That is, β∗j ∼ U(0, 2)
for 1 ≤ j ≤ s∗ and β∗j = 0 for j > s∗. We set the regu-
larization parameter λ = 3σ ·

√
log d/n. The parameters

of Algorithm 1 are chosen as αmin = 1/αmax = 1030,
η = 2, M = 5, and ζ = tol = 10−5. The `2-errors re-
ported are based on 100 independent experiments. We plot
the `2-errors against the effective sample size

√
s∗ log d/n

in Figure 1. The figure illustrates that ‖β̂ − β∗‖2 grows
sublinearly with

√
s∗ log d/n, which corroborates with our

argument that ‖β̂ − β∗‖2 ≤ C
√
s∗ log d/n for some abso-

lute constant C.

To compare Algorithm 1 with inverting f , we consider the
settings where d = 256, s∗ = 8. We then apply Lasso to
the inverted data {f−1(yi),xi}ni=1 where the regularization
parameter of Lasso is selected via 5-fold cross-validation.
The optimization problem of Lasso is also solved using Al-
gorithm 1. We plot the `2-errors of these two techniques
against the effective sample size in Figure 1-(c), which
shows that the proposed method outperforms the linear ap-
proach.

5.2. Real Data Analysis

To show the effectiveness of the proposed method, we study
the Computer Audition Lab 500-Song (CAL500) dataset
[48], which can be obtained from the publicly available Mu-
lan data library [46]. The CAL500 dataset consists of music
annotations of 502 popular music tracks. The attributes of
this dataset consist of both continuous and binary subsets.
The continuous features are obtained from the coefficients
of short time Fourier transforms on each music track. In
specific, there are four types of continuous features: spec-
tral centroids, spectral flux, zero crossings and a time series
of Mel-frequency cepstral coefficient (MFCC). In addition,
for each music track, the values of the binary features are
assigned by human listeners to give semantic descriptions.
For accuracy, each music track is annotated by at least three
human listeners. See [48] for a more detailed introduction
of the CAL500 dataset. This dataset is previously analyzed
in [13, 54], where they study the conditional independence
of the attributes by fitting graphical models. Similar to [13],
we study model (1.1) only using the continuous features. In
specific, we use n random subsamples of the 502 instances
of d = 68 continuous attributes, where n is an integer that
will be specified later. We generate the response according
model (1.1) with σ = 1, f(x) = 4x + cos(x). Moreover,

we choose support of β∗ uniformly over {1, . . . , d}.

Given the response and the design matrix, we study the per-
formance of the proposed estimator. Specifically, we com-
pare the `2-error ‖β̂ − β∗‖2 with

√
s∗ log d/n under the

setting where we fix d = 68, s∗ = 4, 6, or 8, and vary n. In
this setting, the nonzero entries of β∗ are sampled indepen-
dently from the uniform distribution over [0, 2]. We set the
regularization parameter to be λ = 2σ

√
log d/n and the pa-

rameters of Algorithm 1 the same as those in the simulation
studies in §5.1. We plot the `2-errors against the effective
sample size

√
s∗ log d/n in Figure 2-(a) based on 100 ran-

dom experiments . The figure also shows that the estimation
error ‖β̂ − β∗‖2 grows sublinearly with

√
s∗ log d/n.

In addition, we also study the setting where the nonzero
entries of β∗ are set to a constant β0 > 0. In addition, we
fix d = 68, n = 50, and s∗ = 4, 6, or 8. The regularization
parameter λ and the parameters of Algorithm 1 remain
the same. In this case, the value of β0 corresponds to the
magnitude of the signal parameter. Thus, estimation is
easier for large β0 whereas the error is large for small β0.
For presentation, we plot the `2-error ‖β̂ − β∗‖2 against
β0 based on 100 independent trials. As show in in Figure
2-(b), as β0 grows, the estimation error gradually decreases,
which coincides with the intuition.

Moreover, similar to the simulation studies, we also com-
pare the proposed method with the linear framework which
inverts f . In particular, we fix d = 68, s∗ = 4 and vary
n. The support of β∗ is chosen uniformly with the nonzero
entries sampled independently from U(0, 2). We compute
the `2-error ‖β̂ − β∗‖2 of the Lasso estimator obtained us-
ing 5-fold cross-validation. In addition, for the proposed
method, the regularization parameter λ and the parameters
of Algorithm 1 is the same as in the previous setting. In
Figure 2-(c) we plot the `2-errors of these two estimators
against the effective sample size

√
s∗ log d/n based on 100

independent experiments. It clear that the error of the esti-
mator constructed by the linear framework is much larger,
which shows the superiority of the proposed method.

6. Proof of the Statistical Rates
In this section we sketch the proof of the statistical rates of
convergence for the proposed estimator. We defer a more
detailed proofs the main results in the appendix.

Similar to the analysis of Lasso estimator, a main step of
the proof is to show that the error vector lies in an `1-cone.
In specific, for any stationary point β̂ of the optimization
problem in (1.2), we denote δ = β̂ − β∗. Let S be the
support of β∗, we show that

‖δSc‖1 ≤ γ · ‖δS‖1
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Figure 1: Statistical errors ‖β̂ − β∗‖2 plotted against the effective sample size
√
s∗ log d/n with d or s∗ fixed and n varied

are shown in (a) and (b), respectively. The comparison between the method of inverting f and the proposed method is shown
in (c).
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Figure 2: Statistical errors ‖β̂ − β∗‖2 plotted against the effective sample size
√
s∗ log d/n and the magnitude of signal

parameter β0 are shown in (a) and (b), respectively. We fix s∗ and vary n in (a) and fix s∗ = 4, n = 50 in (b). The
comparison between the method of inverting f and the proposed method with s∗ = 4 and n varied is shown in (c).

for some constant γ > 0. This is established by combining
a upper and an lower bound for

〈∇L(β̂)−∇L(β∗),β − β∗〉. (6.1)

For an upper bound, by the optimality of β̂ we have
∇L(β̂) + λ · ξ = 0, where ξ ∈ ∂‖β̂‖1. Note that the
support of β∗ is S, that is, S = {j : β∗j 6= 0}. Also note
that the optimality of β̂ implies that

〈ξSc , β̂Sc〉 = ‖β̂Sc‖1 = ‖δSc‖1.

By Hölder’s inequality, since ‖ξ‖∞ ≤ 1 and β∗S = 0, (6.1)
is bounded by

〈∇L(β̂)−∇L(β∗), β̂ − β∗〉
≤ −λ‖δSc‖1 + λ‖δS

∥∥
1

+ ‖∇L(β∗)‖∞‖δ‖1. (6.2)

Moreover, by calculation, we have

∇L(β∗) = − 1

n

n∑
i=1

[yi − f(x>i β
∗)] · f ′(x>i β∗) · xi

= − 1

n

n∑
i=1

f ′(x>i β
∗) · xi · εi.

Since f ′ is bounded and that εi’s are i.i.d. sub-Gaussian
random variables, conditioning on {xi}ni=1,∇L(β∗) is the
mean of i.i.d. sub-Gaussian random variables [49]. Concen-
tration of measure guarantees that ∇L(β∗) is not far away
from its mean, which is 0. The following lemma shows that
‖∇L(β∗)‖∞ is of order σ ·

√
log d/n with high probability.

Lemma 3. Let L(β) be the least-square loss function de-
fined in (2.1), there exist an absolute constant B > 0
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that does not depend on n, d or s∗ and δ = δ(n, d) that
tends to 0 as n → ∞ such that δ ≤ (2d)−1 and that
‖∇L(β∗)‖∞ ≤ Bσ ·

√
log d/n with probability 1− δ.

In what follows, we condition on the event that
‖∇L(β∗)‖∞ ≤ Bσ ·

√
log d/n, which holds with prob-

ability at least 1− (2d)−1 by Lemma 3. By the definition
of λ and (6.2) we have

〈∇L(β̂)−∇L(β∗), β̂ − β∗〉
≤ −λ‖δSc‖1 + λ‖δS‖1 + L−11 λ‖δ‖1. (6.3)

Thus we derive an upper bound for (6.1). Moreover, the
lemma establishes a lower bound (6.1).

Lemma 4. Recall that Σ̂ := n−1
∑n
i=1 xix

>
i . Under the

Assumption Bounded-Design(D), it holds with probability
at least 1− (2d)−1 that, for any β ∈ Rd,

〈∇L(β)−∇L(β∗),β−β∗〉 ≥ a2(β − β∗)>Σ̂(β − β∗)

− 3bσ
√
D log d/n‖β − β∗‖1.

Thus combining the upper bound and the lower bound for
(6.1), we obtain that

a2δ>Σ̂δ ≤ −λ(1− µ)‖δSc‖1 + λ(1 + µ)‖δS‖1, (6.4)

where µ = L−11 + 3b
√
DL−12 ≤ 0.1. Hence it follows that∥∥δSc‖1 ≤ (1+µ)/(1−µ)‖δS‖1 ≤ 1.23‖δS‖1. This shows

that the error vector lies in the `1-cone

{v ∈ Rd : ‖vSc‖1 ≤ 1.23‖vS‖1}.

Note that by (6.4) we have a2δ>Σ̂δ ≤ λ(1+µ)‖δS‖1. The
final part of the proof is to compare this upper bound with a
bound of δ>Σ̂δ from below, which is given in the following
lemma to bound δ>Σ̂δ from below.

Lemma 5. For any η ∈ Rd and any index set S with |S| =
s∗, let J be the set of indices of the largest k∗ entries of ηSc

in absolute value and let I = J ∪ S. Here s∗ and k∗ are
the same as those in Assumption Sparse-Eigenvalue(s∗, k∗).
Assume that ‖ηSc‖1 ≤ γ‖ηS‖1 for some γ > 0. Then we
obtain that ‖η‖2 ≤ (1 + γ)‖ηI‖2 and that

η>Σ̂η ≥ ρ−(s∗+k∗) ·
[
‖ηI‖2−γ

√
s∗/k∗·√

ρ+(k∗)/ρ−(s∗+2k∗)− 1 · ‖ηS‖2
]
· ‖ηI‖2. (6.5)

Under Assumption 1, we have ρ+(k∗)/ρ−(s∗+2k∗) ≤ 1+
0.5k∗/s∗. By Lemma 5 we obtain that ‖δ‖2 ≤ 2.23‖δI‖2
and that

δ>Σ̂δ ≥
(
1− 1.23

√
0.5
)
· ρ−(s∗ + k∗) · ‖δI‖22

≥ 0.1 · ρ−(s∗ + k∗) · ‖δI‖22, (6.6)

where J is the set of indices of the largest k∗ entries of δSc

in absolute value and I = J ∪S . Combining the upper and
lower bounds for δ>Σ̂δ we obtain

‖δI‖2 ≤ 11/ρ−(s∗ + k∗) · a−2
√
s∗λ.

Therefore we have

‖β̂ − β∗‖1 = ‖δ‖1 ≤ 2.23‖δS‖1 ≤ 2.23
√
s∗‖δS‖2

≤ 25/ρ−(s∗ + k∗) · a−2s∗λ;

‖β̂ − β∗‖2 = ‖δ‖2 ≤ 2.23‖δI‖2
≤ 25/ρ−(s∗ + k∗) · a−2

√
s∗λ.

Thus we establish the statistical rates of convergence for the
proposed estimator.

7. Conclusion
We study parameter estimation for high dimensional re-
gression under known nonlinear transform. We propose
an `1-regularized least-square estimator for estimation. Al-
though the optimization problem is non-convex, we show
that every stationary point converges to the true signal with
the optimal statistical rate of convergence. We establish
the optimality by deriving a minimax lower bound for the
regression model. In addition, we propose an efficient algo-
rithm that successfully converges to a stationary point. Both
simulation experiments and real data analysis are provided
to back up the developed theory.
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A. Proof of the Main Results
In this section, we lay out the proofs of the main results
presented in §3. We first establish the statistical rate of
convergence for the proposed estimator, and then show the
optimality of our procedure by deriving the minimax lower
bound.

A.1. Proof of Theorem 1

Proof. For any stationary point β̂ of the optimization prob-
lem in (1.2), by definition we have

∇L(β̂) + λ · ξ = 0, where ξ ∈ ∂‖β̂‖1.

For notational simplicity, we denote β̂ − β∗ as δ. By defi-
nition, we have

〈∇L(β̂)−∇L(β∗),β − β∗〉 = 〈−λ · ξ −∇L(β∗), δ〉.

We denote the support of β∗ as S , that is, S = {j : β∗j 6= 0}.
By writing ξ = ξS + ξSc we have

〈∇L(β̂)−∇L(β∗), β̂ − β∗〉
= 〈−λ · ξSc − λ · ξS −∇L(β∗), δ〉. (A.1)

Note that β∗S = 0 and 〈ξSc , β̂Sc〉 = ‖β̂Sc‖1 = ‖δSc‖1. By
Hölder’s inequality, since ‖ξ‖∞ ≤ 1, the right-hand side of
(A.1) can be bounded by

〈∇L(β̂)−∇L(β∗), β̂ − β∗〉
≤ −λ‖δSc‖1 + λ‖δS

∥∥
1

+ ‖∇L(β)‖∞‖δ‖1. (A.2)

Now we invoke Lemma 3 to bound the right hand side
of (A.2). In what follows, we condition on the event that
‖∇L(β∗)‖∞ ≤ Bσ ·

√
log d/n, which holds with proba-

bility at least 1− δ, where δ ≥ (2d)−1. By the definition of
λ, we have λ ≥ L1 · ‖∇L(β)‖∞ with probability at least
1− δ. By (A.2) we have

〈∇L(β̂)−∇L(β∗), β̂ − β∗〉
≤ −λ‖δSc‖1 + λ‖δS‖1 + L−11 λ‖δ‖1. (A.3)

Now we invoke Lemma 4 to establish a lower bound of the
left-hand side of (A.3). Combining (3.3), (A.3) and Lemma
4 we obtain that

0 ≤ a2δ>Σ̂δ ≤ −λ‖δSc‖1 + λ‖δS‖1 + µλ‖δ‖1
= −λ(1− µ)‖δSc‖1 + λ(1 + µ)‖δS‖1. (A.4)

where µ = L−11 + 3b
√
DL−12 ≤ 0.1. Hence it follows that∥∥δSc‖1 ≤ (1 + µ)/(1− µ)‖δS‖1 ≤ 1.23‖δS‖1.

Now we invoke the Lemma 5 to bound δ>Σ̂δ from below.
Under Assumption 1, we have

ρ+(k∗)/ρ−(s∗ + 2k∗) ≤ 1 + 0.5k∗/s∗.

Combining this inequality with Lemma 5 we obtain that

δ>Σ̂δ ≥
(
1− 1.23

√
0.5
)
· ρ−(s∗ + k∗) · ‖δI‖22

≥ 0.1 · ρ−(s∗ + k∗) · ‖δI‖22, (A.5)

where J is the set of indices of the largest k∗ entries of δSc

in absolute value and I = J ∪ S. Here the first inequality
of (A.5) follows from Lemma 5 and that S ⊂ I . Combining
(A.4) and (A.5) we obtain that

0.1 · ρ−(s∗ + k∗) · ‖δI‖22 ≤ δ>Σ̂δ ≤ a−2λ(1 + µ)‖δS‖1
≤ 1.1 · a−2

√
s∗λ‖δI‖2,

which implies that ‖δI‖2 ≤ 11/ρ−(s∗ + k∗) · a−2
√
s∗λ.

Note that by Lemma 5 we also have ‖δ‖2 ≤ 2.23‖δI‖2.
Combining this inequality with the fact that ‖δSc‖1 ≤
1.23‖δS‖1, we have

‖β̂ − β∗‖1 = ‖δ‖1 ≤ 2.23‖δS‖1 ≤ 2.23
√
s∗‖δS‖2

≤ 25/ρ−(s∗ + k∗) · a−2s∗λ;

‖β̂ − β∗‖2 = ‖δ‖2 ≤ 2.23‖δI‖2
≤ 25/ρ−(s∗ + k∗) · a−2

√
s∗λ.

Finally, to show that Algorithm 1 indeed catches a sta-
tionary point, we note that the acceptance criterion of
the Algorithm (Line 1) implies that φ(β(1)) ≤ φ(β(0))
where φ(β) = L(β) + λ‖β‖1. Moreover, for t = 2, we
also have φ(β(2)) ≤ max{φ(β(0)), φ(β(1))}. By induc-
tion, we conclude that for all t ≥ 1, φ(β(t)) ≤ φ(β(0)).
Therefore we have β(t) ∈ C :=

{
β ∈ Rd : ‖β‖1 ≤

λ−1 · L(β(0)) + ‖β(0)‖1
}
. Since set C is compact and the

loss function L is continuously differentiable, it is also Lip-
schitz on C. Therefore, by the convergence result of in
Theorem 1 of [51], we conclude that every accumulation
point of Algorithm 1 is a stationary point of optimization
problem (1.2).

A.2. Proof of Theorem 2

In what follows, inspired by [39], we apply Fano’s method
to derive the minimax risk of estimation for the nonlinear
regression model defined in (1.1).

Proof. Let M = M(δn) be the cardinality of a 2δn-
packing set of B0(s) with respect to the `2-metric where
δn will be specified later. We denote the elements of this
packing set as {β1, . . . ,βM}. For any estimator β̂, let
ψ = argmini≤M ‖β̂ − βi‖2, triangle inequality implies
that

2‖β̂ − βi‖2 ≥ ‖β̂ − βi‖2 + ‖β̂ − βψ‖2
≥ ‖βi − βψ‖2 ≥ 2δn for i 6= ψ.
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Thus we conclude that

R∗f (s, n, d) ≥ inf
ψ

sup
1≤i≤M

δ2n · Pβi(ψ 6= i)

≥ inf
ψ
δ2n · PβU (ψ 6= U),

where U is uniform distributed over {1, . . . , N}. We con-
sider the following data-generating process: For a contin-
uously differentiable function f with f ′(u) ∈ [a, b],∀u ∈
R, we first sample a random variable U uniformly over
1, . . .M , then generate data yi = f(x>i β

U ) + εi. Fano’s
inequality implies that

P(ψ 6= U) ≥ 1−
[
I(U ; y1, . . . , yn) + log 2

]/
logN.

In what follows, we establish an upper bound for the mu-
tual information I(U ; y1, . . . , yn). For s ∈ {1, . . . , d}, we
define the high-dimensional sparse hypercube as Co(s) :={
v ∈ {0, 1}d, ‖v‖0 = s}. We define the Hamming dis-

tance on C0(s) as ρH(v,v′) =
∑d
i=1 1{vi 6= v′i}. The

following lemma, obtained from [40], is an extension of the
Varhsamov-Gilbert lemma to C0(s).

Lemma 6 (Sparse Varshamov-Gilbert lemma). For any
two integers s and d satisfying 1 ≤ s ≤ d/8, there ex-
ist v1, . . . ,vM ∈ {0, 1}d with ‖vi‖0 = s for 1 ≤ i ≤ M
such that

ρH(vi,vj) ≥ s/2 for all i 6= j, and
log(M) ≥ s/8 · log[1 + d/(2s)].

By Lemma 6 there exist C′ ⊂ C0 with |C′| ≥ exp
{
s/8 ·

log[1 + d/(2s)]
}

such that ρH(v,v′) ≥ s/2 for all v,v′ ∈
C′. Then for β,β′ ∈ C := δn ·

√
2/s · C′, we have

δ2n · 2/s · ρH(β,β′) ≤ ‖β − β′‖22
≤ 2(‖β‖22 + ‖β′‖22) ≤ 8δ2n,

which implies that δ2n ≤ ‖β − β′‖22 ≤ 8δ2n for all
β,β′ ∈ C. By the convexity of mutual information, we have
I(U ; y1, . . . , yn) ≤ M−2

∑
1≤m,m′≤M DKL(βm,βm

′
).

Since given β and f , yi ∼ N
(
f(x>i β), σ2

)
, direct com-

putation yields that

DKL(βm,βm
′
)

= 1/(2σ2)

n∑
i=1

[f(x>i β
m)− f(x>i β

m′)]. (A.6)

By mean-value theorem, (A.6) can be bounded by

DKL(βm,βm
′
)

≤ n · b2/(2σ2)(βm − βm
′
)>Σ̂(βm − βm

′
)

≤ n · b2 · ρ+(2s)/(2σ2)‖βm − βm
′
‖22

≤ 4nb2 · ρ+(2s) · δ2n/σ2,

where the second inequality follows from ‖βm − βm′‖0 ≤
2s. Therefore we conclude that I(U ; y1, . . . , yn) ≤ 4nb2 ·
ρ+(2s) · δ2n/σ2, which yields that

inf
ψ

Pβ(ψ 6= U) ≥ 1− 4nb2 · ρ+(2s) · δ2n/σ2 + log 2

logM

≥ 1− 4nb2 · ρ+(2s) · δ2n/σ2 + log 2

s/8 · log[1 + d/(2s)]
.

Setting δ2n = σ2s log[1+d/(2s)]
96nb2ρ+(2s) , since s ≥ 4 and d ≥ 8s, we

conclude that the right-hand side is no less than 1/2. Now
we obtain the following minimax lower bound

R∗f (s, n, d) ≥ σ2

192b2ρ+(2s)

s log[1 + d/(2s)]

n
.

This concludes the proof of Theorem 2.

B. Proof of Auxiliary Results
In this appendix, we provide the proofs of the auxiliary
lemmas appearing in the proof of the main results.

Proof of Lemma 3. By the definition of loss function L, for
j = 1, . . . , d, the j-th entry of ∇L(β∗) can be written as
∇jL(β∗) = 1/n·

∑n
i=1 εif

′(x>i β
∗)xij . Recall that εi’s are

i.i.d. centered sub-Gaussian random variables with variance
proxy σ2. Thus conditioning on x1, . . . ,xn, ∇jL(β∗) is a
centered sub-Gaussian random variable with variance proxy
bounded by

σ2 · 1

n2

n∑
i=1

f ′(x>i β
∗)2x2ij ≤ σ2 · b2 · Σ̂j,j

/
n,

where Σ̂ = 1
n

∑n
i=1 xix

>
i . Under Assumption Bounded-

Design(D), the variance proxy of ∇jL(β∗) is bounded by
σ2 · b2 ·D/n. By the definition of variance proxy of sub-
Gaussian random variables, we have

P
(∣∣∇iL(β∗)

∣∣ > σ · b · t ·
√
D/n

∣∣x1, . . . ,xn
)

≤ 2 exp(−t2/2), ∀t > 0. (B.1)

Taking a union bound over j = 1, 2, . . . , d in for the left-
hand side of (B.1) we obtain that

P
(∥∥∇L(β∗)

∥∥
∞ > σ · b · t

√
D/n

∣∣x1, . . . ,xn
)

≤ 2 exp(−t2/2 + log d), ∀t > 0. (B.2)

By choosing t = C
√

log d in (B.2) for a sufficiently largeC,
we conclude that there exist a constant B = C · b ·

√
D > 0

such that ‖∇L(β∗)‖∞ ≤ Bσ
√

log d/n with probability at
least 1− δ, where we have δ ≤ (2d)−1.
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Proof of Lemma 4. By the definition of L(β), the gradient
∇L(β) is given by

∇L(β) = − 1

n

n∑
i=1

[yi − f(x>i β)]f ′(x>i β)xi. (B.3)

Hence for∇L(β∗), (B.3) can be reduced to

∇L(β∗) = − 1

n

n∑
i=1

εif
′(x>i β

∗)xi, (B.4)

where ε1, . . . , εn are n i.i.d. realizations of the random
noise ε in (1.1). For any β ∈ Rd, we denote η = β − β∗.
Recalling that yi = f(x>i β

∗) + εi, Taylor expansion of
(B.3) implies that

∇L(β) = − 1

n

n∑
i=1

εif
′(x>i β)xi

+
1

n

n∑
i=1

f ′(x>i β̃)f ′(x>i β)(x>i η)xi, (B.5)

where β̃ lies on the line segment between β∗ and β. Com-
bining (B.4) and (B.5) we have

〈∇L(β)−∇L(β∗),β − β∗〉 = A1 +A2, (B.6)

where A1 and A2 are defined respectively as

A1 =
1

n

n∑
i=1

f ′(x>i β̃)f ′(x>i β)(x>i η)2 and

A2 =
1

n

n∑
i=1

{
f ′(x>i β

∗)− f ′(x>i β)
}

(x>i η)εi.

By the boundedness of f ′, we can lower bound A1 by

A1 ≥ a2
1

n

n∑
i=1

(x>i η)2 = a2η>Σ̂η. (B.7)

For the second part A2, by the sub-Gaussianity of the ran-
dom noise εi’s,{

f ′(x>i β
∗)− f ′(x>i β)

}
· (x>i η) · εi

is a centered sub-Gaussian random variable with variance
proxy

σ2[f ′
(
x>i β

∗)− f ′(x>i β)]2 · (x>i η)2 ≤ 4σ2b2(x>i η)2.

Therefore we conclude thatA2 is centered and sub-Gaussian
with variance proxy bounded by

4b2n−2σ2
n∑
i=1

(x>i η)2 = 4b2σ2n−1η>Σ̂η.

By the tail bound for sub-Gaussian random variables, we
obtain that for any x > 0,

P
(
|A2| ≥ x

)
≤ 2 exp(−x2/C),

where C = 8b2σ2n−1η>Σ̂η. With probability at least 1−
(2d)−1, it holds that

A2 ≥
√
C · log(4d) ≥ −3bσ

√
log d/n

√
η>Σ̂η

≥ −3bσ
√
D log d/n‖η‖1, (B.8)

where the last inequality is derived from Hölder’s inequality
η>Σ̂η ≤ ‖Σ̂‖∞‖η‖21 ≤ D‖η‖21. Therefore combining
(B.6), (B.7) and (B.8) with probability at least 1− (2d)−1,
we have

〈∇L(β)−∇L(β∗),β − β∗〉

≥ a2η>Σ̂η − 3bσ
√
D log d/n‖η‖1.

This concludes the proof of Lemma 4.

Proof of Lemma 5. Recall that J is the set of indices of the
largest k∗ entries of ηSc in absolute value and let I = J∪S.
The following Lemma establishes a lower-bound on η>Σ̂η.
Lemma 7. Let Σ ∈ Rd×d be a positive semi-definite ma-
trix and ρ−(k) and ρ+(k) be its k-sparse eigenvalues. Sup-
pose that for some integer s and k, ρ−(s + 2k) > 0. For
any v ∈ Rd, let F be any index set of size d − s, that is,
|Fc| = s. We let J be the set of indices of the k largest
component of vFc in absolute value and let I = Fc ∪ J .
Then we have

v>Σv ≥ρ−(s+ k) ·
[
‖vI‖2−√

ρ+(k)/ρ−(s+ 2k)− 1 · ‖vF‖1/
√
k
]
· ‖vI‖2.

By Assumption 1, ρ−(s∗ + 2k∗) > 0. Combining Lemma
7 with F = Sc and that ‖ηSc‖1 ≤ γ‖ηS‖1 ≤ γ

√
s‖ηS‖2

together yield inequality (6.5).

For the second part of the lemma, by the definition of J we
obtain that

‖ηIc‖∞ ≤ ‖ηJ ‖1
/
k∗ ≤ ‖ηSc‖1

/
k∗ ≤ γ/k∗‖ηS‖1,

hence by Hölder’s inequality we have

‖ηIc‖2 ≤ ‖ηIc‖1/21 ‖ηIc‖1/2∞
≤ (γ/k∗)1/2‖ηS‖1/21 ‖ηIc‖

1/2
1

≤ γk∗−1/2 · ‖ηS‖1,

where we use the fact that Ic ⊂ Sc. Thus it holds that

‖ηIc‖2 ≤ γ
√
s∗/k∗ · ‖ηS‖2 ≤ γ · ‖ηI‖2 and (B.9)∥∥η∥∥

2
≤ (1 + γ) · ‖ηI‖2. (B.10)

Thus we conclude the proof of Lemma 5.
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Proof of Lemma 7. Without loss of generality, we assume
that Fc = {1, . . . , s}. We also assume that for v ∈
Rd,when j > s, vj is arranged in descending order of
|vj |. That is, we rearrange the components of v such that
|vj | ≥ |vj+1| for all j greater than s. Let J0 = {1, . . . , s}
and Ji = {s+ (i− 1)k+ 1, . . . ,min(s+ ik, d)} for i ≥ 1.
By definition, we have J = J1 and I = J0∪J1.Moreover,
we have ‖vJi‖∞ ≤ ‖vJi−1‖1

/
k when i ≥ 2 because of

the descending order of |vj | for j > s. Then we further
have

∑
i≥2 ‖vJi

‖∞ ≤ ‖vF‖1
/
k.

We define the restricted correlation coefficients of Σ as

π(s, k) := sup

{
v>IΣvJ ‖vI‖2
v>IΣvI‖vJ ‖∞

: I ∩ J = ∅,

|I| ≤ s, |J | ≤ k,v ∈ Rd
}
.

As shown in [56], if ρ−(s+ k) > 0 we have

π(s, k) ≤
√
k

2
·
√
ρ+(k)/ρ−(s+ k)− 1. (B.11)

Then by the definition of π(s+ k, k) we obtain∣∣v>IΣvJi

∣∣≤ π(s+ k, k) ·
(
v>IΣvI

)
· ‖vJi

‖∞
/
‖vI‖2.

Thus we have the following upper bound for
∣∣v>IΣvIc

∣∣ :∣∣v>IΣvIc
∣∣ ≤∑

i≥2

∣∣v>IΣvJi

∣∣
≤ π(s+ k, k) · ‖vI‖−12

(
v>I ΣvI

)∑
i≥2

‖vJi
‖∞

≤ π(s+ k, k) · ‖vI‖−12

(
v>IΣvI

)
‖vF‖1

/
k.

(B.12)

Because v>Σv ≥ v>IΣvI+2v>IΣvIc , by (B.12) we have

v>Σv

≥ v>IΣvI − 2π(s+ k, k)‖vI‖−12

(
v>I ΣvI

)
‖vF‖1

/
k

=
(
v>IΣvI

)[
1− 2π(s+ k, k)‖vI‖−12 ‖vF‖1

/
k
]
.

(B.13)

Combining (B.13), the fact that v>IΣvI ≥ ρ−(s + k) ·
‖vI‖22 and (B.11) for π(s+ k, k), we conclude the proof of
Lemma 7.


