Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Probabilistic Models for Incomplete Multi-dimensional Arrays

Wei Chu, Zoubin Ghahramani; JMLR W&CP 5:89-96, 2009.

Abstract

In multiway data, each sample is measured by multiple sets of correlated attributes. We develop a probabilistic framework for modeling structural dependency from partially observed multi-dimensional array data, known as pTucker. Latent components associated with individual array dimensions are jointly retrieved while the core tensor is integrated out. The resulting algorithm is capable of handling large-scale data sets. We verify the usefulness of this approach by comparing against classical models on applications to modeling amino acid fluorescence, collaborative filtering and a number of benchmark multiway array data.



Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Page last modified on Fri Apr 3 20:30:46 BST 2009.

Copyright @ JMLR 2000. All rights reserved.