Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

On Partitioning Rules for Bipartite Ranking

Stephan Clemencon, Nicolas Vayatis; JMLR W&CP 5:97-104, 2009.

Abstract

The purpose of this paper is to investigate the properties of partitioning scoring rules in the bipartite ranking setup. We focus on ranking rules based on scoring functions. General suf- cient conditions for the AUC consistency of scoring functions that are constant on cells of a partition of the feature space are provided. Rate bounds are obtained for cubic histogram scoring rules under mild smoothness assumptions on the regression function. In this setup, it is shown how to penalize the empirical AUC criterion in order to select a scoring rule nearly as good as the one that can be built when the degree of smoothness of the regression function is known.



Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Page last modified on Fri Apr 3 20:30:46 BST 2009.

Copyright @ JMLR 2000. All rights reserved.