Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Multi-Manifold Semi-Supervised Learning

Andrew Goldberg, Xiaojin Zhu, Aarti Singh, Zhiting Xu, Robert Nowak; JMLR W&CP 5:169-176, 2009.

Abstract

We study semi-supervised learning when the data consists of multiple intersecting manifolds. We give a finite sample analysis to quantify the potential gain of using unlabeled data in this multi-manifold setting. We then propose a semi-supervised learning algorithm that separates different manifolds into decision sets, and performs supervised learning within each set. Our algorithm involves a novel application of Hellinger distance and size-constrained spectral clustering. Experiments demonstrate the benefit of our multi-manifold semi-supervised learning approach.



Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Page last modified on Fri Apr 3 20:30:46 BST 2009.

Copyright @ JMLR 2000. All rights reserved.