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Abstract

An optimization algorithm for minimizing
a smooth function over a convex set is de-
scribed. Each iteration of the method com-
putes a descent direction by minimizing, over
the original constraints, a diagonal plus low-
rank quadratic approximation to the function.
The quadratic approximation is constructed
using a limited-memory quasi-Newton update.
The method is suitable for large-scale prob-
lems where evaluation of the function is sub-
stantially more expensive than projection onto
the constraint set. Numerical experiments
on one-norm regularized test problems indi-
cate that the proposed method is competitive
with state-of-the-art methods such as bound-
constrained L-BFGS and orthant-wise descent.
We further show that the method generalizes
to a wide class of problems, and substantially
improves on state-of-the-art methods for prob-
lems such as learning the structure of Gaus-
sian graphical models and Markov random
fields.

1 Introduction

One-norm regularization is increasingly used in the sta-
tistical learning community as a tool to learn sparse or
parsimonious models. In the case of i.i.d. regression or
classification, there are many efficient algorithms (e.g.,
Andrew and Gao (2007)) for solving such problems. In
the case of structured models, such as Markov random
fields (MRFs), the problem becomes much harder be-
cause the cost of evaluating the objective function is
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much higher. In particular, for parameter estimation in
chain structured graphs, it takes O(k2v) time per train-
ing case, where v is the number of variables (nodes)
in the graph, and k is the number of states; for struc-
ture learning in Gaussian MRFs, it takes O(v3) time
per objective evaluation; and for structure learning in
discrete MRFs, it takes O(kv) time per evaluation (see
Table 1). This makes learning very expensive.

One-norm regularized maximum likelihood can be cast
as a constrained optimization problem—as can several
other problems in statistical learning, such as training
support vector machines, etc. Although standard al-
gorithms such as interior-point methods offer powerful
theoretical guarantees (e.g., polynomial-time complex-
ity, ignoring the cost of evaluating the function), these
methods typically require at each iteration the solution
of a large, highly ill-conditioned linear system; solving
such systems is potentially very difficult and expensive.
This has motivated some authors to consider alterna-
tives such as gradient-projection methods (Duchi et al.,
2008a; Schmidt et al., 2008), which only use the func-
tion gradient; these methods require only O(n) time per
iteration (where n is the number of parameters), plus
the cost of projecting onto the constraint set. Because
the constraints are often simple, the projection onto
the set of feasible values can typically be computed effi-
ciently. Although this leads to efficient iterations, using
only first-order information means that these methods
typically require a substantial number of iterations to
reach an accurate solution.

In the case of unconstrained differentiable optimiza-
tion with a large number of variables, algorithms based
on limited-memory quasi-Newton updates, such as L-
BFGS (Liu and Nocedal, 1989), are among the most
successful methods that require only first derivatives.
In a typical optimization algorithm, a step towards the
solution is computed by minimizing a local quadratic
approximation to the function; between iterations, the
quadratic model is updated with second-order infor-
mation inferred from observed changes in the gradient.
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Model Parameters Evaluation Projection

GGM-Struct O(v2) O(v3) O(n)
MRF-Struct O(k2v2) O(kv) O(n)
CRF-Params O(k2 + kf) O(tvk2) O(n)

Table 1: Number of parameters, cost of evaluating objec-
tive, and cost of projection for different graphical model
learning problems with (group) `1-regularization. Symbols:
v: number of nodes in graphical model; k: number of states
per node; f : number of features; t: number of training
examples; n: number of optimization variables. Models:
GGM-Struct: learning a sparse Gaussian graphical model
structure by imposing a (group) `1 penalty on the precision
matrix; (Banerjee et al., 2008; Duchi et al., 2008a; Fried-
man et al., 2007); MRF-Struct: learning a sparse Markov
random field structure with (group) `1 penalties applied to
the edge weights (Lee et al., 2006; Schmidt et al., 2008);
CRF-Params: learning the parameters of a chain structured
conditional random field by using an `1 penalty on the local
features (Andrew and Gao, 2007).

The information available via the L-BFGS updates of-
ten allows these methods to enjoy good convergence
rates. Crucially, the overhead cost per iteration is only
O(mn), where m is a small number (typically between
five and ten) chosen by the user. Tellingly, one of the
most successful large-scale bound-constrained optimiza-
tion methods is L-BFGS-B (Byrd et al., 1995), which
combines L-BFGS updates with a gradient-projection
strategy. Also, one of the most effective solvers for
(non-differentiable) `1-regularized optimization prob-
lems is also an extension of the L-BFGS method, known
as orthant-wise descent (OWD) (Andrew and Gao,
2007). Unfortunately, these extensions crucially rely
on the separability of the constraints or of the regu-
larization function; this requirement ensures that the
scaled search direction continues to provide descent for
the objective even after it is projected. In general, it is
not straightforward to efficiently apply such algorithms
to problems with more general constraints without a
substantial increase in computation.

This paper presents a new algorithm based on a two-
level strategy. At the outer level, L-BFGS updates are
used to construct a sequence of constrained, quadratic
approximations to the problem; at the inner level, a
spectral projected-gradient method approximately min-
imizes this subproblem. The iterations of this algorithm
remain linear in the number of variables, but with a
higher constant factor than the L-BFGS method, and
requiring multiple projections for each iteration. Never-
theless, the method can lead to substantial gains when
the cost of the projection is much lower than evaluat-
ing the function. We describe the new algorithm in
§§2–5; in §6 we show experimentally that it equals or
surpasses the performance of state-of-the-art methods
on the problems shown in Table 1.

2 Projected Newton

We address the problem of minimizing a differentiable
function f(x) over a convex set C:

minimize
x

f(x) subject to x ∈ C. (1)

We cannot in general compute the solution to this
problem analytically and must resort to iterative al-
gorithms. Beginning with a solution estimate x0, at
each iteration k the projected Newton method forms a
quadratic model of the objective function around the
current iterate xk:

qk(x) , fk + (x− xk)T gk + 1
2 (x− xk)TBk(x− xk).

Throughout this paper, we use the shorthand notation
fk = f(xk) and gk = ∇f(xk); Bk denotes a positive-
definite approximation to the Hessian ∇2f(xk). The
projected Newton method computes a feasible descent
direction by minimizing this quadratic model subject
to the original constraints:

minimize
x

qk(x) subject to x ∈ C. (2)

Because Bk is positive definite, the direction dk ,
x− xk is guaranteed to be a feasible descent direction
at xk. (If xk is stationary, then dk = 0.) To select
the next iterate, a backtracking line search along the
line segment xk + αdk, for α ∈ (0, 1], is used to select
a steplength α that ensures that a sufficient decrease
condition, such as the Armijo condition

f(xk + αdk) ≤ fk + ναgTk dk, with ν ∈ (0, 1),

is satisfied. By the definition of d, the new iterate will
satisfy the constraints for this range of α. A typical
value for the sufficient decrease parameter ν is 10−4. A
suitable test of convergence for the method is that the
norm of the projected gradient, PC(xk−gk)−xk, where
PC is the projection onto C, is sufficiently small. If Bk
is chosen as the exact Hessian ∇2f(xk) whenever it is
positive definite, and if the backtracking line search
always tests the value α = 1 first, this method achieves
a quadratic rate of convergence in the neighborhood
of any point that satisfies the second-order sufficiency
conditions for a minimizer; see Bertsekas (1999, §2.2).

Despite its appealing theoretical properties, the pro-
jected Newton method just summarized is inefficient
in its unmodified form. The major short-coming of the
method is that finding the constrained minimizer of the
quadratic model may be almost as difficult as solving
the original problem. Further, it becomes completely
impractical to use a general n-by-n Hessian approxi-
mation Bk as n grows large. In the next section, we
summarize the L-BFGS quasi-Newton updates to Bk,
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Algorithm 1: Projected quasi-Newton Algorithm

Given x0, c, m, ε. Set k ← 0
while not Converged do

fk ← f(xk), gk ← ∇f(xk)
if k = 0 then

dk ← −gk/||gk||
else

Solve (2) for x∗k [Algorithm 2]
dk ← x∗k − xk

if ‖PC(xk − gk)− xk‖ ≤ ε then
Converged

α← 1
xk+1 ← xk + dk

while fk+1 > fk + ναgT
k dk do

Choose α ∈ (0, α) [cubic interpolation]
xk+1 ← xk + αdk

sk ← xk+1 − xk

yk ← gk+1 − gk

if k = 0 then
S ← sk, Y ← yk

else
if k ≥ m then

Remove first column of S and Y
S ← [S sk]
Y ← [Y yk]

σk ← (yT
k sk)/(yT

k yk)
Form N and M [update L-BFGS vectors; see §3]
k ← k + 1

and how they lead to efficient computation of qk(x)
and ∇qk(x). In §4 we describe how to efficiently solve
(2) with an SPG algorithm. Algorithm 1 summarizes
the resulting method.

3 Limited-memory BFGS Updates

Quasi-Newton methods allow us to build an approxi-
mation to the Hessian by using the observed gradient
vectors at successive iterations. It is convenient to
define the quantities

sk , xk+1 − xk and yk , gk+1 − gk.

In the BFGS method, the approximation begins with
an initial matrix B0 , σI (for some positive σ), and
at each iteration an updated approximation Bk+1 is
computed that satisfies the secant equation

Bk+1sk = yk.

To uniquely choose among matrices satisfying this inter-
polation condition, the BFGS method chooses the sym-
metric matrix whose difference with the previous ap-
proximation Bk minimizes a weighted Frobenius norm.
This leads to the BFGS formula

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
, (3)

which is a rank-two change to Bk. The limited-memory
variant of BFGS (L-BFGS) maintains only the most
recent m vectors sk and yk, and discards older vectors.
The L-BFGS update is described in Nocedal and Wright
(1999, §7.3).

The compact representation

Bk = σkI −NM−1NT ,

where N is n-by-m, M is m-by-m, and σk is a positive
scalar, is given by Byrd et al. (1994). Typically, σk =
(yTk sk)/(yTk yk). The SPG algorithm for solving (2)
requires computing qk(x) and ∇qk(x) at each iteration,
and hence requires matrix-vector products with Bk.
With the compact representation, these products can
be computed with O(mn) cost.

The L-BFGS approximation will be strictly positive
definite as long as the curvature condition yTk sk > 0
is satisfied. This is guaranteed to be true for strictly
convex functions, and in the unconstrained case can
be satisfied for general functions by using a suitable
line search. Since in our case it may not be possible to
satisfy this condition along the feasible line segment,
the update is skipped on iterations that do not satisfy
this condition. An alternative strategy is to use the
“damped” L-BFGS update which employs a suitable
modification to the vector yk; see Nocedal and Wright
(1999, §18.3).

4 Spectral Projected Gradient

The SPG method (Birgin et al., 2000) is a modifica-
tion of the classic projected-gradient method. While
SPG continues to use projections of iterates along the
steepest descent direction, which guarantees that it
can generate feasible descent directions, the line search
in SPG differs in two crucial ways. First, SPG uses
a nonmonotone line search in which sufficient descent
is determined relative to a fixed number of previous
iterations, rather than just the last. This allows the
objective to temporarily increase while ensuring overall
convergence. Second, it uses the spectral steplength
introduced by Barzilai and Borwein (1988). This gives
an initial steplength based on a diagonal approximation
to the Hessian that minimizes the squared error in the
quasi-Newton interpolation conditions. In particular,
we have

αbb =
〈yk−1, yk−1〉
〈sk−1, yk−1〉

. (4)

Based on this, we set the initial steplength to

α = min{αmax,max{αmin, αbb}},

where we set the upper limit αmax = 1010 and the
lower limit αmin = 10−10. Due to its strong empirical
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Algorithm 2: Spectral Projected Gradient Algorithm

Given x0, step length bounds 0 < αmin < αmax, initial step
length αbb ∈ [αmax, αmax], and history length h.
while not converged do

ᾱk ← min{αmax,max{αmin, αbb}}
dk ← PC(xk − ᾱk∇qk(xk))− xk

Set bound fb ← max{f(xk), f(xk−1), . . . , f(xk−h)}
α← 1
while qk(xk + αdk) > fb + να∇qk(xk)T dk do

Choose α ∈ (0, α) (cubic interpolation)

xk+1 ← xk + αdk

sk ← xk+1 − xk

yk ← ∇qk(xk+1)−∇qk(xk)
αbb ← yT

k yk/s
T
k yk

k ← k + 1

performance and simplicity there has recently been a
growing interest in the SPG method and it has been
used successfully in several applications (e.g., van den
Berg and Friedlander (2008); Dai and Fletcher (2005)).

In this paper we use SPG to solve the constrained,
strictly-convex quadratic subproblems (2), where Bk is
defined by the compact L-BFGS approximation. In the
unconstrained case, Friedlander et al. (1999) show that
SPG has a superlinear convergence rate for minimizing
strictly convex quadratics under certain conditions.
The SPG method is summarized in Algorithm 2. Note
that the computational complexity is dominated by the
cost of function and gradient evaluations (and thus by
the efficient matrix-vector products with the Hessian
approximation Bk, c.f. §3), and by the projections PC(·)
onto C. For good overall performance it is thus essential
to have an operator that efficiently projects onto the
feasible set. Fortunately, such operators exist for a
number of commonly encountered convex sets. We give
examples in the next section.

In practice it may not be feasible or necessary to run
the SPG subproblem until convergence; recall that the
only requirement is that the SPG algorithm generates
a direction of feasible descent for the quasi-Newton
method. Therefore we may, for example, choose to ini-
tialize SPG with the projected steepest-descent iterate
and perform a fixed number of iterations to improve
the steepest descent direction towards the optimal pro-
jected quasi-Newton direction. Either way, solving the
SPG subproblem can be expected to be more expen-
sive than updating the compact L-BFGS matrix. This
implies that the proposed quasi-Newton algorithm is
most effective when the cost of evaluating the overall
objective function dominates the cost of applying SPG
to the subproblem.

5 Projection onto Norm-Balls

The Euclidean projection operator used in the previous
section is defined as

PC(c) = arg min
x

‖c− x‖2 subject to x ∈ C. (5)

We are particularly interested in the case where C is a
ball induced by a given norm:

C ≡ Bτ = {x | ‖x‖ ≤ τ}.

For certain `p-norms (i.e., ‖x‖p = (
∑
i |xi|p)1/p), no-

tably `2 and `∞, this projection is easily solved;
for `2 the solution is given by x = βc, with β =
min{1, τ/‖c‖2}; for `∞ we have x = sgn(c) ·min{|c|, τ}.
A randomized algorithm with expected linear-time for
projection onto the `1-norm ball is described by Duchi
et al. (2008b).

In the context of group variable selection it is often
beneficial to work with projection onto mixed p, q-norm
balls, defined by

‖x‖p,q =
(∑

i ‖xσi‖pq
)1/p

, (6)

where {σi}gi=1 are g disjoint groups of indices. A special
case of this mixed norm is the `1,2-norm

‖x‖1,2 =
∑
i ‖xσi‖2,

which is used in group Lasso (Yuan and Lin, 2006).
The `1,∞-norm also arises in group variable selection
(Turlach et al., 2005); the `∞,1 and `∞,2-norms arise in
dual formulations of group variable selection problems
(Duchi et al., 2008a). Projection onto the `∞,p-norm
balls reduces to independent projection of each group
xσi onto `p-norm balls.

As the following proposition (proved in the Appendix)
shows, projection onto the `1,2-norm ball is done by
projecting the vector of group norms ‖xσi‖2 onto the
`1-ball, followed by scaling the elements in each group.

Proposition 1. Consider c ∈ Rn and a set of g dis-
joint groups {σi}gi=1 such that ∪iσi = {1, . . . , n}. Then
the Euclidean projection PC(c) onto the `1,2-norm ball
of radius τ is given by

xσi = sgn(cσi) · wi, i = 1, . . . , g,

where w = P(v) is the projection of vector v onto the
`1-norm ball of radius τ , with vi = ‖cσi‖2.

Using the efficient `1 projection algorithm, this imme-
diately gives an expected linear time algorithm for `1,2
projection.
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Figure 1: Comparison of objective value versus number of
function evaluations for different methods (chain-structured
CRF parameter estimation with `1-regularization).

6 Experiments

In this section we compare the running time of differ-
ent optimization algorithms on three different convex
objective functions subject to convex constraints. For
problems with simple constraints, our projected quasi-
Newton (PQN) method is competitive with state-of-
the-art methods based on L-BFGS, and for problems
with more complex constraints (for which L-BFGS can-
not easily be applied), our method outperforms the
current best approaches.

6.1 Sparse Conditional Random Field
Parameter Estimation

We first consider a noun-phrase chunking task (Sang
and Buchholz, 2000). The goal is to compute
p(yi|x,w, v), where yi is one of 22 possible labels
(states) for word i, x is a set of features derived from the
sentence, and (w, v) are the parameters of the model.
A simple approach would be to use logistic regression.
However, to exploit correlation amongst neighboring
labels, we use a chain structured conditional random
field (CRF), defined by

p(y | x,w, v) ∝ exp

(
n∑
i=1

wTyixi +
n−1∑
i=1

vyi,yi+1

)
,

where w are the parameters for the local evidence
potentials, and v are the parameters controlling the
22 × 22 transition matrix. Note that evaluating this
likelihood term (and its derivative) takes O(vk2) time
per sentence, where k = 22 is the number of states,
and v is the length of each sentence.

We follow Sha and Pereira (2003) and use a feature

vector of size 1.8M, representing things such as “did
word W occur at location i”, for each English word W
that occured three or more times in the training data.
To perform feature selection from this large set, we use
a sparsity-promoting `1 regularizer. Thus we have to
solve the following convex and non-smooth problem

minimize
w,v

−
∑
i

p(yi | xi, w, v) + λ‖w‖1 + λ‖v‖1, (7)

or equivalently the following constrained and smooth
problem

minimize
w,v

−
∑
i p(yi | xi, w, v)

subject to ‖w‖1 + ‖v‖1 ≤ τ.
(8)

Here λ (or τ) controls the amount of regularization/
sparsity. (Note that here xi represent observed features,
rather than parameters to be optimized.)

We compared four optimizers on this data set: (i)
applying a bound-constrained L-BFGS method to (7)
after converting it into a bound-constrained problem
with twice the number of variables (see, e.g., Andrew
and Gao (2007)), (ii) applying the OWD algorithm
(Andrew and Gao, 2007) directly to (7), (iii) applying
SPG directly to (8), and finally (iv) applying our PQN
method to (8). Figure 1 plots the value of the objective
(7) against the number of evaluations of the function for
λ = 1 (and τ set such that the problems give the same
solution). With this value of λ, the model achieves
a nearly identical prediction error to that achieved
with `2-regularization, but only had 10, 907 non-zero
parameters. In this plot, we see that the three methods
that use the L-BFGS approximation (L-BFGS-B, OWD,
and PQN) behave similarly and all find a very good
solution after a small number of iterations. We also
compared applying PQN to the bound constrained
problem solved by L-BFGS-B, and found that it gave
nearly identical performance to PQN applied to (8). In
contrast, SPG takes substantially longer to approach
this quality of solution. These trends also held for other
values of λ. While the added iteration cost of PQN
makes it unappealing for this problem in comparison
to OWD or L-BFGS-B, we emphasize that L-BFSG-B
and OWD can not handle more general constraints,
while PQN can be used to give this level of performance
for more general constraints.

6.2 Gaussian Graphical Model Structure
Learning

We consider the problem of learning the structure
(topology) of a Gaussian graphical model. Since absent
edges in the graph correspond to zeros in the precision
matrix, we can efficiently learn the structure by solving

minimize
K�0

− log det(K) + tr(Σ̂K) + λ‖K‖1,
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Figure 2: Comparison of dual objective value versus number of function evaluations for different methods (GGM structure
learning with `1-regularization (left) and group `1-regularization (right)).
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Figure 3: Average cross-validated log-likelihood against reg-
ularization strength under different regularization schemes
applied to the regularized empricial covariance for the yeast
gene expression data from (Duchi et al., 2008a).

where Σ̂ is the empirical covariance, K is the precision
matrix, the norm ‖K‖1 is applied element-wise, and
K � 0 denotes symmetric positive definiteness of K;
see Banerjee et al. (2008). This method is dubbed the
“graphical lasso” by Friedman et al. (2007). Note that
evaluating the objective takes O(v3) time.

A block coordinate descent (BCD) algorithm for opti-
mizing this is presented in Banerjee et al. (2008) and
Friedman et al. (2007). This method solves the corre-
sponding dual problem

maximize
Σ,W

log det(Σ̂ +W )

subject to Σ̂ +W � 0, ‖W‖∞ ≤ λ,
(9)

where W is the dual variable and ‖W‖∞ is computed
element-wise. More recently, Duchi et al. (2008a)

describe a projected gradient (PG) method for solv-
ing (9). The PG method constructs a dual feasible
K = (Σ̂ +W )−1 at each iteration, and stops when the
primal-dual gap is sufficiently small. While projection
in the dual formulation is efficient, first-order methods
can be slow. In Figure 2, we compare our PQN method
to the PG method on the gene expression data from
Duchi et al. (2008a) (we also plot the objective value
at corresponding iterations of the BCD method).

Duchi et al. also consider an interesting extension to
the problem, where sparsity on groups of variables is
imposed using `1,∞-regularization, analogous to group
lasso in the classification/regression setting. In Fig-
ure 2, we see that PQN is also faster than the PG
method for this problem. Further, PQN can also easily
be applied in the case of the `1,2 group norm. Figure 3
compares the three regularization strategies over fifty
random train/test splits following the scenario outlined
in Duchi et al. (2008a), where we see that regularization
with group `1,2-norm provides a further improvement.

6.3 Markov Random Field Structure
Learning

In the case of Markov random fields on binary variables
(such as Ising models), there is a one-to-one correspon-
dence between parameters and edges in the graph, as in
the Gaussian case, and so one can again learn structure
by optimizing an `1-penalized log likelihood (Lee et al.,
2006). Note, however, that computing the objective
now takes O(kv) time per example, where k = 2 and
v is the number of nodes. Lee et al. (2006) proposed
to use loopy belief propagation to approximate the
objective, and to use an incremental grafting strategy
to perform the optimization.
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Figure 4: Comparison of objective value versus number of
function evaluations for different methods (MRF structure
learning with group `1-regularization).

If the variables are non-binary, there are multiple pa-
rameters per edge, and so one needs to use a group `1
penalty to learn sparse graphs (Schmidt et al., 2008).
(This also happens when learning the structure of condi-
tional random fields, where each edge is often associated
with a weight vector.) Schmidt et al. (2008) convert
the penalized problem into a constrained problem by
introducing one variable per group, and applying SPG
to the resulting second-order cone problem. Using
our proposition regarding efficient projection for the
`1,2-norm balls, PQN can be applied directly to the
constrained version of the problem.

Figure 4 compares the SPG method of Schmidt et al.
(2008), the proposed PQN method, and a grouped
variable extension of the grafting method of Lee et al.
(2006), on an MRF structure learning problem. (The
data set consists of 5400 measurements of 11 protein
activity levels, that have been discretized into three
states, representing under-expressed, normal, and over-
expressed, as in Sachs et al. (2005), who modeled the
data using a directed graphical model whose structure
was estimated by heuristic search methods.) We see
that, once again, the PQN method is much faster than
the previous best (SPG) method.

7 Discussion

Although our experiments have focused on constraints
involving norms of the parameter vectors, there is a
wide variety of constraints where the projection can
easily be computed. For example, projection onto a
hyper-plane or half-space is a trivial calculation, while
projection onto the probability simplex can be com-
puted in O(n log n) (Duchi et al., 2008b). Projection

of a symmetric matrix onto the cone of positive semi-
definite matrices (in Frobenius norm) is given by set-
ting negative eigenvalues in the spectral decomposition
of the matrix to 0 (Boyd and Vandenberghe, 2004).
Projection onto a second-order cone constraint of the
form ||x||2 ≤ s (where x and s are both variables) can
be computed in linear-time (Boyd and Vandenberghe,
2004), while projection onto a constraint of the form
||x||∞ ≤ s can be solved in O(n log n) (Schmidt et al.,
2008). Further, if it is difficult to compute the projec-
tion onto the full constraint set but simple to project
onto subsets of the constraints, Dykstra’s algorithm
(Dykstra, 1983) can be used to compute the projection
(but the efficiency of this depends on the constraints).

This paper is concerned with the problem of minimizing
an expensive objective that depends on a large number
of variables, within the domain of a convex set where
the projection is easily computed. The method pre-
sented here is a natural generalization of the L-BFGS
method to this task, and takes advantage of the recent
SPG method to make the iterations efficient. Our ex-
periments indicate that the method achieves state of
the art performance on problems with very simple con-
straints, while it represents a substantial improvement
over state of the art methods for problems with more
complex constraints.

Appendix

Proof of Proposition 1. Recall that the n-vector x is
partitioned into g groups with pairwise disjoint in-
dex sets σi, i = 1, . . . , g whose union is {1, . . . , n}.
Write x as a g-vector x̃ = (x̃1, x̃2, · · · , x̃g), where each
x̃k = (xj)j∈σk denotes the tuple formed by xσk , the
components of x belonging to group k. With this
notation we extend the signum function as

sgn(x̃)k = sgn(x̃k) =
x̃k
|x̃k|

, (10)

with |x̃k| = ‖xσk‖2. It can be verified that this extended
signum function satisfies the usual properties that

sgn(αx̃) = sgn(x̃) for all α > 0, (11a)
‖ sgn(x̃k)‖2 ≤ 1. (11b)

We adopt the convention that sgn(0) can be taken to
be any vector satisfying the second property. Finally,
with the p-norm ‖x̃‖p := ‖x‖p,2 based on (6), it can be
shown that ∇ 1

2‖x̃‖
2
2 = x̃, and ∇‖x̃‖1 = sgn(x̃).

We now apply these results to derive the optimality
conditions for the group projection leading to the ex-
tended soft-thresholding operator. Using ‖x̃‖2 = ‖x‖2,
and ‖x̃‖1 = ‖x‖1,2 we can solve

minimizeex 1
2‖c̃− x̃‖

2
2 + λ‖x̃‖1. (12)
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A vector x̃ is a solution of this problem if and only if
it satisfies

∇( 1
2‖x̃− c̃‖

2
2 + λ‖x̃‖1) = x̃− c̃+ λ sgn(x̃) = 0. (13)

We claim that the x̃ satisfying this condition, and hence
giving the solution of (12), is given by

x̃k = Sλ(c̃)k = Sλ(c̃k), (14)

where

Sλ(c̃k) =

{
sgn(c̃k)(|c̃k| − λ) if |c̃k| > λ;
0 otherwise.

To check this we separately consider the two cases
|c̃| > λ and |c̃| ≤ λ. In the case where |c̃k| > λ,
substitute x̃k = Sλ(c̃k) into (13) and use property
(11a) to obtain:

x̃k − c̃k + λ sgn(x̃k)
= sgn(c̃k)(|c̃k| − λ)− c̃k + λ sgn(sgn(c̃k)(|c̃k| − λ))
= sgn(c̃k)(|c̃k| − λ)− c̃k + λ sgn(c̃k)
= sgn(c̃k) · |c̃k| − c̃k = 0.

In case |c̃k| ≤ λ, we substitute x̃ = 0, giving c̃ =
λ sgn(0). But because sgn(0) is arbitrary, we can choose
it as (1/λ)c̃k, which clearly satisfies the condition.

Assuming ‖c̃‖1 > τ > 0, it remains to be shown how to
find λ giving ‖Sλ(c̃)‖1 = τ , based on vi = |c̃i|. Defining
Iλ = {j | |c̃j | > λ} = {j | vj > λ}, and noting that
| sgn(c̃i)| = 1 for all i ∈ Iλ we have

‖Sλ(c̃)‖1 =
∑
i∈Iλ

| sgn(c̃i)(|c̃i| − λ)| =
∑
i∈Iλ

||c̃i| − λ|

=
∑
i∈Iλ

|c̃i| − λ =
∑
i∈Iλ

vi − λ = Sλ(v).

The last step follows from vi ≥ 0 and the definition
of Iλ, and shows that the λ corresponds to the value
chosen for projection onto the `1-norm ball. The final
part of the proposition constructs x from v and w =
Pτ (v). In group notation this step can be derived as

x̃i = sgn(c̃i) · wi = sgn(c̃i) · sgn(vi) ·max{0, vi − λ}
= sgn(c̃i) ·max{0, vi − λ}
= sgn(c̃i) ·max{0, |c̃i| − λ},

where we used (10) and the fact that we can take
sgn(vi) = sgn(|c̃i|) = 1. This exactly coincides with
(14), as required.
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