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1 Introduction

In this document we give all the necessary details to implement the EP algorithm for the proposed method
described in the main manuscript, i.e. SEP. In particular, we describe how to compute the EP posterior
approximation from the product of all approximate factors and how to implement the EP updates to refine
each approximate factor. We also give an intuitive idea about how to compute the EP approximation to
the marginal likelihood and its gradients. Note that the updates described are very similar to the ones in
[3].

2 Reconstruction of the posterior approximation

In this section we show how to obtain the posterior approximation as the normalized product of the
approximate factors φ̃i(f) and the prior p(f |X). From the main manuscript, we know that these factors
have the following form:

φ̃i(f) = s̃i exp

{
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}
, (1)

p(f |X) = N (f |0,Kff ) , (2)

where υi = K−1

ff
Kffi

and Kff is a covariance matrix of size m×m with the prior covariance among the

values associated to the inducing points X. Both the approximate factors and the prior are Gaussian,
a family of distributions that is closed under product and division. The consequence is that q(f) =∏n
i=1 φ̃i(f)p(f |X)/Zq is also Gaussian. In particular, q(f) = N (f |µ,Σ). To obtain the parameters of q we

can use the formulas given in the Appendix of [1]. This gives,

Σ =
(
K−1

ff
+ Υ∆ΥT

)−1

, (3)

µ = ΣΥµ̃ (4)

where ∆ is a diagonal matrix with diagonal entries equal to ν̃i, Υ is a matrix whose i-th column is equal
to υi, and µ̃ is a vector whose i-th component is equal to µ̃i. These computations have a cost O(nm2),
under the assumption that m� n. Otherwise the cost is O(m3).

3 Computation of the cavity distribution

Before the update of each φ̃i, the first step is to compute the cavity distribution q\i ∝ q/φ̃i. Because q
and φ̃i are Gaussians, so it is q\i. In particular, q\i(f) = N (f |µ\i,Σ\i). The parameters of q\i can also
be obtained using the formulas given in the Appendix of [1]. That is,

Σ\i =
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Σ−1 − ν̃iυiυT
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)−1

= Σ + (ν̃−1
i − υ

T
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−1Συiυ
T
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)
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)
, (6)
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where we have used the Woodbury matrix identity and that Σ−1 = (Σ\i)−1+ν̃iυiυ
T
i . These computations

have a cost that is O(m2).

4 Update of the approximate factors

In this section we show how to find the approximate factors φ̃i. For that we consider that the corresponding
cavity distribution q\i has already been computed. From the main manuscript, we know that the exact
factor to be approximated is:

φi(f) =

∫
Φ(yifi)N (fi|mi, si)dfi = Φ

(
yimi√
si + 1

)
, (7)

where Φ(·) is the c.d.f. of a standard Gaussian, mi = Kfif
K−1

ff
f and si = Kfifi −Kfif

K−1

ff
Kffi

. We

compute Zi, i.e., the normalization constant of φiq
\i, as follows:

Zi =

∫
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)
N (f |µ\i,Σ\i)df = Φ
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yiai√
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)
, (8)

where ai = Kfif
K−1

ff
µ\i and bi = 1 + Kfifi − Kfif

K−1

ff
Kffi

+ Kfif
K−1

ff
Σ\iK−1
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. By using the
equations given in the Appendix of [1] it is possible to obtain the moments, i.e., the mean µ̂ and the
covariances Σ̂ of φiq

\i, from the derivatives of logZi with respect to the parameters of q\i. Namely,

m̂ = µ\i + Σ\i
∂ logZi
∂µ\i

= µ\i + αiΣ
\iK−1

ff
Kffi

, (9)
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where

αi =
N (yiai/

√
bi|0, 1)

Φ(yiai/
√
bi)

yi
bi
. (11)

These are very similar to the EP updates described in [3].
Given the previous updates, it is possible to find the parameters of the corresponding approximate

factor φ̃i, which is simply obtained as φ̃i = Ziq
new/q\i, where qnew is a Gaussian distribution with the

mean and the covariances of φiq
\i. We show here that the precision matrix of the approximate factor φ̃i

has a low rank form. Denote with Ṽi to such matrix. Let also m̃i be the precision matrix of φ̃i times the
mean vector. Define υi = K−1

ff
Kffi

. Then, by using the equations given in the Appendix of [1] we have
that

Ṽi = Σ̂−1 −
(
Σ\i

)−1

=
(
Σ\i

)−1

+ υiυ
T
i ν̃i −

(
Σ\i

)−1

= υiυ
T
i ν̃i (12)

m̃i = Σ̂−1m̂−
(
Σ\i

)−1

µ\i =
(
αi + aiν̃i + αiυ

T
i Σ\iυiν̃i

)
υi = µ̃iυi (13)

where we have used the Woodbury matrix identity, the definition of m̂ and Σ̂, and

ν̃i =

[(
α2
i +

αiai
bi

)−1

+ υT
i Σ\iυi

]−1

µ̃i = αi + aiν̃i + αiυ
T
i Σ\iυiν̃i . (14)

Thus, we see that the approximate factor has the form described in (1).
Once we have the parameters of the approximate factor φ̃i, we can compute the value of s̃i in (1)

which guarantees that the approximate factor integrates the same as the exact factor with respect to q\i.
Let θ be the natural parameters of q after the update. Similarly, let θ\i be the natural parameters of q\i.
Then,

s̃i = logZi + g(θ\i)− g(θ) , (15)

where g(θ) is the log-normalizer of a multi-variate Gaussian with natural parameters θ).
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5 Parallel EP updates and damping

The updates described for the approximate factors are done in parallel. That is, we compute the required
quantities to update each factor φ̃i at the same time using (14). Then, the new parameters of each
approximate factor ν̃i and µ̃i are computed based on the previous ones. Finally, after the parallel update,
we recompute q as indicated in Section 2. All these operations have a closed-form and involve only matrix
multiplications with cost O(nm2), where n is the number of samples and m is the number of inducing
points.

Parallel EP updates were first proposed in [7] and have been also used in the context of Gaussian process
classification in [2]. Parallel EP updates are much faster than sequential updates because they avoid having
to code loops over the training instances. All operations simply involve matrix multiplications which are
significantly faster as a consequence of using the BLAS library (available in most scientific programming
languages such as R, matlab or Python) that has been significantly optimized.

Parallel updates may deteriorate EP convergence in some situations. Thus, we also use damped EP
updates. Damping is a standard approach in EP algorithms which significantly improves convergence.
The idea is to avoid large changes in the parameters ν̃i and µ̃i of the approximate factors φ̃i. For this, the
parameters after the EP updates are set to be a linear combination of the old and the new parameters.
In particular,

ν̃i = ρν̃newi + (1− ρ)ν̃oldi , µ̃i = ρµ̃new
i + (1− ρ)µ̃old

i , (16)

where ρ ∈ [0, 1] is a parameter controlling the amount of damping. If ρ = 1 there is no damping and
if ρ = 0 the parameters of each φ̃i are not updated at all. In our experiments we set ρ = 0.5 when
doing batch training and we set ρ = 0.99 when the training process is done in a stochastic fashion using
minibatches (in this case we do more frequent reconstructions of q, i.e., after processing each minibatch
and less damping is needed). Damping does not change the fixed points of EP.

6 Estimate of the marginal likelihood

As indicated in the main manuscript, the estimate of the marginal likelihood is given by

logZq = g(θ)− g(θprior) +

n∑
i=1

log Z̃i log Z̃i = logZi + g(θ\i)− g(θ) , (17)

where θ, θ\i and θprior are the natural parameters of q, q\i and p(f |X), respectively; and g(θ) is the
log-normalizer of a multivariate Gaussian distribution with natural parameters θ. Let m and S be the
variance and the mean, respectively, of a Gaussian distribution over m dimensions with natural parameters
θ′. Then,

g(θ′) =
m

2
log 2π +

1

2
log |S|+ 1

2
mTS−1m . (18)

The consequence is that

logZq =
1

2
log |Σ|+ 1

2
µTΣ−1µ− 1

2
log |Kff |+

n∑
i=1

log Z̃i , (19)

with

Z̃i = logZi +
1

2
log |Σ\i|+ 1

2
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2
log |Σ| − 1

2
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T
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T
i Συiµ̃iCi
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iCi
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+

1

2
log(1− ṽiυiΣυi) , (20)

where we have used that
(
Σ\i

)−1

= Σ−1−ν̃iυiυT
i , the Woodbury matrix identity, the matrix determinant

lemma, that µ\i = Σ\i(Σ−1µ − µ̃iυi), and set Ci = (ν̃−1
i − υiΣυi)−1. The consequence is that the

computation of logZq can be done with cost O(nm2) if m� n.
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7 Gradient of logZq after convergence

In this section we show that the gradient of logZq, after convergence, is given by the expression given in
the main manuscript. For that, we extend the results of [5]. Denote by ξj to one hyper-parameter of the
model. That is, a parameter of the covariance function k or a component of the inducing points. Then,
the gradient of logZq with respect to this parameter is:

∂ logZq
∂ξj

=

(
∂g(θ)

∂θ

)T
∂θ

∂ξj
−
(
∂g(θprior)

∂θprior

)T
∂θprior
∂ξj

+

n∑
i=1

∂ logZi
∂ξj

+

n∑
i=1

(
∂g(θ\i)

∂θ\i

)T
∂θ\i

∂ξj
−

n∑
i=1

(
∂g(θ)

∂θ

)T
∂θ

∂ξj
, (21)

where θ, θ\i and θprior are the natural parameters of q, q\i, and the prior p(f |X), respectively. Impor-
tantly, the term logZi depends on ξj in a direct way, i.e., because the exact likelihood factor φi(f) =∫

Φ(yifi)N (fi|mi, si)dfi = Φ(yimi/
√
si + 1), with mi = Kfif

K−1

ff
f and si = Kfifi −Kfif

K−1

ff
Kffi

, de-

pends on ξj , and in an indirect way, i.e., because the natural parameters of the cavity distribution q\i,
θ\i, depend on ξj . In particular,

Zi =

∫
φi(f) exp

{(
θ\i
)T

h(f)− g(θ\i)

}
df , (22)

where h(f) are the sufficient statistics of q\i. The consequence is that

∂ logZi
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=
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∂ logZi
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, (23)

where η and η\i are the expected sufficient statistics under the posterior approximation q and the cavity
distribution q\i. Recall that we have assumed convergence which leads to a match of the moments between
Z−1
i φiq

\i and q.
If we substitute (23) in (21) we have that:
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where ηprior are the expected sufficient statistics of the prior and we have used that θ = θprior +
∑n
i=1 θi,

with θi the natural parameters of the approximate factor φ̃i, and that θ\prior =
∑n
i=1 θi. Thus, at conver-

gence the approximate factors can be considered to be fixed. In particular, (24) is the gradient obtained
under the assumption that all φ̃i remain fixed and do not change with the model hyper-parameters.

The chain rule of derivatives has to be taken with care in the previous expression. Since the natural
parameters and the expected sufficient statistics are often expressed in the form of matrices, the chain
rule for matrix derivatives has to be employed in practice (see [4, Sec. 2.8.1]). The consequence is that

ηT ∂θprior
∂ξj

− (ηprior)
T ∂θprior

∂ξj
= −0.5tr

(
MT Kff

∂ξj

)
, (25)

where

M = K−1

ff
−K−1

ff
ΣK−1

ff
−K−1

ff
µµTK−1

ff
. (26)

In the case of computing the derivatives with respect to the inducing points several contractions occur, as
indicated in [6]. The computational cost of obtaining these derivatives is O(m3).

The derivatives with respect to each logZi can be computed also efficiently using the chain rule for
matrix derivatives indicated in [4, Sec. 2.8.1]. The computational cost of obtaining these derivatives is
O(nm2). Furthermore, several standard properties of the trace can be employed to simplify the compu-
tations. In particular, the trace is invariant to cyclic rotations. Namely, tr(ABCD) = tr(DABC).

By using the gradients described, it is possible to maximize logZq to find good values for the model
hyper-parameters. However, as stated in the main manuscript, we do not wait until EP converges for doing
the update. In particular, we perform an update of the hyper-parameters considering the φ̃i as fixed, after
each parallel refinement of the approximate factors. Because we are updating the approximate factors
too, we cannot simply expect that such steps always improve on the objective logZq, but in practice
they seem to work very well. In our experiments we use an adaptive learning rate that is different for
each hyper-parameter. In particular, we increase the learning rate by 2% if the sign of the estimate of
the gradient for that hyper-parameter does not change between two consecutive iterations. If a change is
observed, we reduce we multiply the learning rate by 1/2. If an stochastic approximation of the estimate
of the gradient is employed, we use the ADADELTA method to estimate the learning rate [8].

8 Predictive distribution

Once the training process is complete, we can use the posterior approximation q for making predictions
about the class label y? ∈ {−1, 1} of a new instance x?. In that case, we compute first an approximate
posterior for the Gaussian process evaluated at the target location, i.e., f(x?), which is summarized as
f?:

p(f?|y,X) ≈
∫
p(f?|f)q(f)df

≈
∫
N (f?|Kf?f

K−1

ff
f ,Kf?f? −Kf?f

K−1

ff
Kff?

)N (f |µ,Σ)df

≈ N (f?|m?, s?) , (27)

where m? = Kf?f
K−1

ff
µ and s? = Kf?f?−Kf?f

K−1

ff
Kff?

+Kf?f
K−1

ff
ΣK−1

ff
Kff?

. Kf?f? and Kf?f
contain

the prior variance of f? and the prior covariances between f? and f , respectively. The approximate
predictive distribution for the class label y? is simply:

p(y?|y,X) =

∫
p(y?|f?)p(f?|y,X)df? =

∫
Φ(y?f?)N (f?|m?, s?)df? = Φ

(
y?m?√
s? + 1

)
, (28)

where Φ(·) is the c.d.f of a standard Gaussian distribution.
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