
JMLR: Workshop and Conference Proceedings 0: 1-16 NIPS 2008 workshop on causality

Learning Causal Protein-Signaling Networks

Jin Tian jtian@cs.iastate.edu

Department of Computer Science
Iowa State University
Ames, IA 50011, USA

Akshay Deepak akshayd@cs.iastate.edu

Department of Computer Science

Iowa State University

Ames, IA 50011, USA

Abstract

Graphical Models have been widely used for modelling causal relationships. We use causal
Bayesian networks to model protein signaling networks and use the Bayesian approach to
learn the network structure from mixed observational and experimental data. We compute
the maximum a posteriori (MAP) network for a biological data set originally analyzed by
Sachs et al. (2005).
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1. Introduction

We study a biological data set CYTO presented by Sachs et al. (2005). The task is to
learn a protein signaling network from multicolor flow cytometry data that recorded the
molecular activity of 11 proteins under various experimental conditions. The CYTO data
consists of roughly 700 to 900 samples per experimental condition, corresponding to various
“interventions” on the system of interest. Sachs et al. (2005) modeled the protein signaling
networks as causal Bayesian networks and inferred the network structure from the data
using a Bayesian approach. More specifically, a random restart simulated annealing search
is applied in the space of DAGs to find the networks with high posterior probabilities and
a bootstrap method is used to find edges with high posteriors. The CYTO data was also
analyzed by Ellis and Wong (2008) using MCMC in the space of node orderings, and by
Eaton and Murphy (2007) using a dynamic programming algorithm that computes the exact
edge posterior probabilities under a special graph prior.

In this paper, we also use the Bayesian approach to learn causal Bayesian networks
from data. We compute the MAP network (the network with the globally highest posterior
probabilities) using the dynamic programming (DP) algorithm in (Silander and Myllymaki,
2006). First we review the Bayesian approach to learning causal Bayesian network structures
from interventional data.
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2. The Bayesian Approach

Let our problem domain be a set of discrete random variables V = {V1, . . . , Vn}. We assume
that a causal model (or a causal Bayesian network) over V is a pair M = <G,ΘG>, where
G is a DAG over V , called a causal diagram, and ΘG is a set of probability parameters. We
assume that each variable Vi can take values from a finite domain, Dm(Vi) = {vi1, . . . , viri

},
where ri is the number of states of Vi. We use Pai to represent the set of parents of Vi in
a causal diagram G and Dm(Pai) to represent the set of states of Pai.

Assume that we have a set of random samples D generated from a causal model M =
<G,ΘG>. In the Bayesian approach, we compute the posterior probability of a causal
diagram G given the dataset D as:

P (G|D, ξ) =
P (D|G, ξ)P (G|ξ)

P (D|ξ)
, (1)

where ξ represents our background knowledge. We can then compute the posterior proba-
bility of any hypothesis of interest by averaging over all possible causal models. Since the
number of possible diagrams is exponential in the number of variables n, it is often imprac-
tical to sum over all diagrams unless for very small n. One way to deal with this problem
is to use the relative posterior probability P (D,G|ξ) as a scoring metric and search for dia-
grams with high scores. In this paper we will assume that P (G|ξ) is a uniform distribution
and use the following Bayesian score

score(G : D) = lnP (D|G, ξ) (2)

2.1 Bayesian Score

For the case that the dataset D is from a static distribution, closed form expressions for
P (D|G, ξ) have been derived (Cooper and Herskovits, 1992; Heckerman et al., 1995). As-
suming global and local parameter independence, and parameter modularity, we have that
the Bayesian score can be decomposed into the summation of local scores

score(G : D) =

n
∑

i=1

scorei(Vi, Pai : D). (3)

Further assuming Dirichlet parameter priors, we have

scorei(Vi, Pai : D) = aScorei(A,D), (4)

where the function aScorei(A,D) is defined as

aScorei(A,D) = ln
∏

pai

Γ(αpai
)

Γ(αpai
+ Npai

)

∏

vi

Γ(αvi;pai
+ Nvi,pai

)

Γ(αvi;pai
)

, (5)

where Γ(·) is the Gamma function, Nvi,pai
is the number of cases in data set D for which

Vi takes the value vi and its parents Pai takes the value pai, αvi;pai
are Dirichlet hyper

parameters, A = {αvi ;pai
: vi ∈ Dm(Vi), pai ∈ Dm(Pai)}, and

αpai
=

∑

vi

αvi;pai
, Npai

=
∑

vi

Nvi,pai
.
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We use
∏

vi
as a shorthand for

∏

vi∈Dm(Vi)
and

∏

pai
for

∏

pai∈Dm(Pai)
. In this paper, we

will use the BDe score and assume the following hyperparameters

αvi;pai
= 1/(riqi) (6)

where ri is the number of states of Vi and qi is the number of states of Pai.

2.2 Bayesian score with interventions

The Bayesian score described above assumes that the dataset D is drawn from a static
distribution. We can adapt the score to deal with the situation where we have a number of
data sets D1, D2, . . ., generated from the same causal structure but under different exper-
imental conditions (Tian and Pearl, 2001b). For example, assume that we have two data
sets D1 and D2, and D1 is generated from the causal model M = <G,ΘG>. Assume that
D2 is generated from M under an ideal intervention on variable Vk that set Vk to a fixed
value. Then the Bayesian score is given by (Cooper and Yoo, 1999)

scorei(Vi, Pai : D1, D2) =

{

aScorei(A,D1 + D2), i 6= k
aScorei(A,D1), i = k

(7)

If D2 is generated from the same causal structure G but with different parameters Θ ′
G, and

we have no knowledge about how the two sets of parameters ΘG and Θ′
G differ, we may

assume that they are independent and we use the following Bayesian score (Tian and Pearl,
2001b):

scorei(Vi, Pai : D1, D2) = aScorei(A,D1) + aScorei(A,D2) (8)

The CYTO data consists of 9 data sets under different conditions. Assume that the data
set cd3cd28.xls is generated from the causal model M = <G,ΘG>. Then we assume that
each of the data sets cd3cd28+aktinhib.xls, cd3cd28+g0076.xls, cd3cd28+psitect.xls, and
cd3cd28+u0126.xls is generated from M under some ideal intervention. We will consider
the data set cd3cd28+ly.xls as generated from a general perturbation rather than an ideal
intervention on akt as the actual intervention is not directly on akt. We assume that each
of the data sets cd3cd28icam2.xls, cd3cd28+ly.xls, pma.xls, and b2camp.xls is generated
from the same causal structure G but with different parameters. In summary, we use
the following Bayesian score. For those variables on which no intervention is performed,
Vi ∈ {raf, plcg, P IP3, erk, P38, jnk}

scorei(Vi, Pai : D) = aScorei(A,Dcd3cd28 + Du0126 + Dg0076 + Dpsitect + Daktinhib)

+ aScorei(A,Dicam2) + aScorei(A,Dly) + aScorei(A,Dpma + Db2camp).
(9)

If a variable Vj is set by intervention in data set Dj , to compute the local score of Vj we
will assume ideal intervention and simply drop the data set Dj from Eq. (9). For example,
for Vi = PKC,

scorei(Vi, Pai : D) = aScorei(A,Dcd3cd28 + Du0126 + Dpsitect + Daktinhib)

+ aScorei(A,Dicam2) + aScorei(A,Dly) + aScorei(A,Db2camp). (10)
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3. Finding Optimal Structures

Although finding the network structure with the maximum score is NP-hard, it is feasible
for small networks. Given a decomposable score as in (3), a best network can be found in
O(n22n) time and O(2n) space using the DP algorithm in (Silander and Myllymaki, 2006).
Note that several networks may have the same best scores and the DP algorithm simply
returns one of them. There are n = 11 variables in the CYTO data, and a best network
can be found in a few seconds.

Once we find a best network, then other best networks with the same scores can be easily
identified. Two DAGs are Markov equivalent (or independence equivalent) if and only if they
have the same skeletons and the same sets of v-structures, that is, two converging arrows
whose tails are not connected by an arrow (Verma and Pearl, 1990). Given observational
data alone, two Markov equivalent structures are indistinguishable. In fact, the BDe score
specified in (4) and (6) satisfies the property that if two neworks are Markov equivalent
then they have the same scores (Heckerman et al., 1995). Interventional data can further
increase our ability to recover the true causal structure. Specifically, an intervention on
variable Vi determines the direction of the edges between Vi and its neighbors. Given a set
of observational and interventional data, the extended BDe score as given in (9) satisfies
the property that if two networks are Markov equivalent and have the same set of neighbors
for each intervened variable then they have the same scores. In particular, we have the
following

Property 1 For the CYTO data, if two neworks have the same skeletons, the same sets
of v-structures, and the same sets of neighbors for mek, PIP2, akt, PKA,PKC, then they
have the same scores.

Using Property 1, we can find all the best networks that are indistinguishable given the
CYTO data by the DP algorithm.

4. Experimental Results

The CYTO data measured 11 variables under 9 experimental conditions. The original data
were discretized into 3 states (low, medium, and high). We used the discretized data in
Sachs et al. (2005) consisting of 600 samples per condition.

4.1 Learning Causation by Detecting Changes

Causal information may be learned by detecting changes in the probability distributions
under different experimental conditions, in particular, changes in the marginal probability
of each variable (Tian and Pearl, 2001a). It is obvious that an intervention on a variable
X in a causal model M = <G,ΘG> may potentially alter the marginal probabilities of the
descendants of X in G and can not alter the marginals of nondescendants of X. Assume
that we have two data sets D1 and D2 where D1 is generated from M and D2 is generated
from M under an intervention on variable X. If the marginal of a variable Y has changed,
we conclude that Y is a descendant of X, denoted by X →→ Y .

We used the general perturbation data cd3cd28.xls as the base set and compared it with
other 8 data sets to detect marginal probability changes in all 11 variables. We used χ2 test
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to detect distribution changes with significance level α = 0.0005 (we used a small α value
as there are close to 100 χ2 tests to perform). If χ2 > χ2

α then we decide “change”, else we
do not make any conclusion. We drew the following conclusions

akt →→ {PIP2, P IP3, erk, p38, jnk} (11)

mek →→ {PKC,PKA, akt, erk, raf, jnk} (12)

PKC →→ all other 10 variables (13)

PIP2 →→ {akt, erk, raf, p38, jnk, plcg, P IP3} (14)

It is clear that there are cyclic causal relations. For example we have mek →→ PKC and
PKC →→ mek.

4.2 Finding Optimal Structures

The MAP network that maximizes the Bayesian score is shown in Figure 1, which turns out
to be unique as there exists no other score equivalent networks. There is large agreement
with the results obtained in (Sachs et al., 2005) if considering only skeletons (or undirected
edges), and there are also many differences, in particular in the orientation of edges. There
are a number of edges in the MAP network that are missing from the model in (Sachs
et al., 2005). It appears that the skeleton of the MAP network agrees more with the model
(Figure 6c) in (Eaton and Murphy, 2007) than that in (Sachs et al., 2005). It is likely that
the orientation differences are due to the cyclic nature of the causal relations in protein
signaling networks. We also noticed that the causal directions in the MAP network do not
match with those obtained by detecting changes given in Eqs.(11)-(14).

5. Conclusion

We use causal Bayesian networks to model protein signaling networks and computed the
MAP network for the CYTO data. It seems that inferring the causal directions using
Bayesian network models may not be reliable due to the cyclic nature of the causal relations
in protein signaling networks.
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Figure 1: The MAP network.
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Appendix B. Pot-luck challenge: FACT SHEET.

(for a task solved)

Title: Learning Causal Protein-Signaling Networks
Participant name, address, email and website:
Jin Tian and Akshay Deepak, jtian@cs.iastate.edu, akshayd@cs.iastate.edu
Department of Computer Science, Iowa State University, Ames, IA 50011, USA
Task(s) solved: CYTO
Reference:

Method:

• Preprocessing: We used the discretized data in Sachs et al. (2005) consisting of 5400
samples with 600 samples per condition.

• Causal discovery: We used the Bayesian approach to learn causal Bayesian networks
from mixed observational and experimental data. We computed the maximum a
posteriori (MAP) network using the dynamic programming algorithm in (Silander
and Myllymaki, 2006).

Results: The MAP network.
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Keywords:

• Causal discovery: Bayesian Network.
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