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Key facts:

Data sets for discovering the local structure around a target variable. Time independent
tasks. Learning causal structure from observational data. Four semi-artificial datasets (two
using re-simulated data and two using real data augmented with artificial probe variables):

Dataset | Domain Type Features | Feat. # | Train # | Test #

REGED | Genomics Re-simulated | Numeric | 999 500 20000

SIDO Pharmacology | Real + probes | Binary 4932 12678 10000

CINA Econometrics | Real + probes | Mixed 132 16033 10000

MARTI | Genomics Re-simulated | Numeric | 999 500 20000
Abstract:

We designed four datasets for the purpose of benchmarking local causal discovery algo-
rithms. These include two “re-simulated” datasets obtained from artificially generated
data from models trained with real data and two datasets including real variables inter-
mixed with artificial variables (called probes). There is no time dependency in the samples.
We chose applications in marketing, pharmacology and bio-medicine spanning a high diver-
sity of types of distributions. The datasets were used in two challenges in 2008 organized
for the WCCI and NIPS conferences. A detailed technical report on the dataset design is
available (Guyon et al., 2009). The website of the challenges remains open for post-challenge
submissions (http://clopinet.com/causality).

Design:

We focused on some specific aspects of causal discovery:

Causality between random variables. We address causal relationships between ran-
dom variables, as opposed to causal relationships between events, or objects.

No time dependency. Our everyday-life concept of causality is very much linked to time
dependencies (the causes precede their effects). However, many machine learning
problem are concerned with stationary systems or “cross-sectional studies”, which are



studies where many samples are drawn at a given point in time. Thus, sometimes the
reference to time is replaced by the notion of “causal ordering”. Causal ordering can
be understood as fixing a particular time scale and considering only causes happening
at time ¢ and effects happening at time ¢t + ¢, where §t can be made as small as we
want. In practice, this means that the samples in our various training and test sets are
drawn independently, according to a given distribution, which changes only between
training and test set versions.!

Learning from observational data. Only training data from a “natural” pre-manipulation
distribution (observational data) is available for training. In other settings, experi-
mental data may be available as well. Relatively small training sets are provided,
making it difficult to infer conditional independencies and learning distributions.

Discovering local causal relationships. We focus on one particular variable of interest
called “target” and design tasks requiring to uncover the variables, which are most
closely related (e.g., direct causes and consequences, Markov blanket, depth 3 net-
work). The problem of local causal relationships is closely related to that of variable
selection: (1) variables closely related to the target in a causal graph may be highly
predictive; (2) the knowledge of causal relationships is useful to select the variables,
which will remain predictive in post-manipulation distributions.

Predicting the consequences of manipulations. There is no predictive task in the
pot-luck challenge LOCANET tasks, but our datasets were previously used for predic-
tion tasks in the WCCI 2008 “causation and prediction challenge” (Guyon et al., 2008).
They include test samples drawn from a “natural” pre-manipulation distribution and
test samples drawn from various post-manipulation distributions, which can be used
to assess predictive performances of the target variable. Post-challenge submissions
can be made online at http://www.causality.inf.ethz.ch/challenge.php.

The type of causal relationships under consideration have often been modeled as Bayesian
causal networks or structural equation models (SEM) (Pearl, 2000; Spirtes et al., 2000;
Neapolitan, 2003). In the graphical representation of such models, an arrow between two
variables A — B indicates the direction of a causal relationship: A causes B. A node in
of the graph, labeled with a particular variable X, represents a mechanism to evaluate the
value of X given the parent node variable values. For Bayesian networks, such evaluation is
carried out by a conditional probability distribution P(X|Parents(X)) while for structural
equation models it is carried out by a function of the parent variables, plus some noise.
Learning a causal graph can be thought of as a model selection problem: Alternative graph
architectures are considered and a selection is performed, either by ranking the architec-
tures with a global score (e.g., a marginal likelihood, or a penalty-based cost function), or
by retaining only graphs, which fulfill a number of constraints such as dependencies or inde-
pendencies between subsets of variables. Bayesian networks and SEM provide a convenient
language to talk about the type of problem we are interested in, but we made an effort to
design tasks, which do not preclude of any particular model.

1. When manipulations are performed, we must specify whether we sample from the distribution before or
after the effects of the manipulation have propagated. Here we assume that we sample after the effects
have propagated.



We have adopted two strategies to design datasets suitable for benchmarks:

e Re-simulated data: We train a causal model (a causal Bayesian network or a struc-
tural equation model) with real data. The model is then used to generate artificial
training and test data for the challenge. Truth values of causal relationships are known
for the data generating model and used for scoring causal discovery results.

e Real data with probe variables: We use a dataset of real samples. Some of the
variables may be causally related to the target and some may be predictive but non-
causal. The nature of the causal relationships of the variables to the target is unknown
(although domain knowledge may allow us to validate the discoveries to some extent).
We add to the set of real variables a number of distractor variables called “probes”,
which are generated by an artificial stochastic process, including explicit functions of
some of the real variables, other artificial variables, and/or the target. All probes are
non-causes of the target, some are completely unrelated to the target. The identity
of the probes in concealed.

The LOCANET datasets include two re-simulated datasets and two real datasets with
probes. They nicely complement each other: Re-simulated data provide us with full control
over the data generative process and the truth values of all causal relationships, while real
data with probes provide us with actual data distributions. The fact that truth values of
causal relationships are known only for the probes affects the evaluation of causal discovery,
which is less reliable than for artificial data.

Dataset description:

We formatted four datasets, including two re-simulated datasets (REGED and MARTTI) and
two real datasets with probes (CINA and SIDO). All datasets are thoroughly documented
(including origin of the raw data, data preparation, past usage, and baseline results) in a
Technical Report (Guyon et al., 2009). We briefly describe them:

REGED (REsimulated Gene Expression Dataset): The problem is to find genes, which
could be responsible of lung cancer. The data are generated by a model derived from real
human lung-cancer microarray gene expression data. From the causal discovery point of
view, it is important to separate genes whose activity causes lung cancer from those whose
activity is a consequence of the disease. The data include no hidden variable or missing
data. The target variable is binary: it separates malignant samples (adenocarcinoma) from
control samples (squamous).

SIDO (SImple Drug Operation mechanisms) contains descriptors of molecules which
have been tested against the AIDS HIV virus. The target values indicate the molecular
activity (+1 active, —1 inactive). The causal discovery task is to uncover causes of molecular
activity among the molecule descriptors. This would help chemists in the design of new
compounds, retaining activity, but having perhaps other desirable properties (less toxic,
easier to administer). The molecular descriptors were generated programmatically from the
three dimensional description of the molecule, with several programs used by pharmaceutical
companies for QSAR studies (Quantitative Structure-Activity Relationship). For example,
a descriptor may be the number of carbon molecules, the presence of an aliphatic cycle, the
length of the longest saturated chain, etc.



CINA (Census Is Not Adult) is derived from census data (the UCI machine-learning
repository Adult database). The data consists of census records for a number of individuals.
The causal discovery task is to uncover the socio-economic factors affecting high income
(the target value indicates whether the income exceeds 50K). The 14 original attributes
(features) including age, workclass, education, marital status, occupation, native country,
etc. are continuous, binary, or categorical. Categorical variables were converted to multiple
binary variables (as we shall see, this preprocessing, which facilitates the tasks of some
classifiers, complicates causal discovery).

MARTI (Measurement ARTIfact) is obtained from the same data generative process
as REGED, a source of simulated genomic data. Similarly to REGED the data do not have
hidden variables or missing data, but a noise model was added to simulate the imperfections
of the measurement device. The goal is still to find genes, which could be responsible of
lung cancer. The target variable is binary; it indicates malignant samples (adenocarcinoma)
vs. control samples (squamous). The feature values representing measurements of gene
expression levels are assumed to have been recorded from a two-dimensional microarray
32x32. The training set was perturbed by a zero-mean correlated noise model (7).

For the “causation and prediction challenge” (Guyon et al., 2008), the participants had
to return predictions for the binary target variable on test data for three test set versions
(version 0 from the unmanipulated distribution and versions 1, and 2 from the manipulated
distribution). For the “pot-luck challenge”, the participants needed only the training data
(the same in all three versions) to produce the local causal structure.

Task of the LOCANET challenge:

The participants were asked to provide a depth 3 causal network (oriented graph structure)
around the target, using only training data only for causal discovery. The submission
format is via a text file containing the list of parents of the features of interest. The target
is numbered 0. All other features are numbered with their column number in the data
tables. Provide a file named: <yourlastname>_<dataname>_feat.localgraph. Example
Guyon_LUCAS_feat.localgraph:

0: 15
1: 34
2: 1

6: 5
8:69
9: 011
11: 0 10

Evaluation:

The participants of LOCANET were ranked on the basis of an average edit distance to
the true causal relationship between the target and variables in the depth three network.
Specifically, we considered only local directed acyclic graphs and encoded the relationship
of a variable to the target variable as a string of up (u) and down (d) arrows, from the
target:

Depth 1 relatives: parents (u) and children (d).



Depth 2 relatives: spouses (du), grand-children (dd), siblings (ud), grand-parents (uu).
Depth 3 relatives: great-grand-parents (uuu), uncles/aunts (uud), nices/nephews (udd),
parents of siblings (udu), spouses of children (ddu), parents in law (duu), children of spouses
(dud), great-grand-children (ddd).

A confusion matrix C;; was computed, recording the number of relatives confused for
another type of relative, among the 14 types of relatives in depth 3 networks. A cost
matrix A;;, was applied to account for the distance between relatives (computed with an
edit distance as the number of substititions, insertion, or deletion to go from one string
to the other, using the string description described above). The score of the solution was

computed as:
S=> A;Cy
tj

There are additional details on how to handle ties. We provide the Matlab code to compute
this score (Guyon, 2009). For artificially generated data (REGED and MARTTI), the ground
truth for the target local neighborhood was determined by the generative model. For real
data with artificial “probe” variables (SIDO and CINA), we do not have ground truth for
the relationships of the real variables to the target. The score was therefore computed on
the basis of the artificial variables only.

After the challenge, we also computed other metrics of evaluation. For particular fea-
tures subsets (parents, children, parents and children, Markov blanket?, all relatives up to
depth 2, all relatives up to depth 3), we computed precision and recall (/em aka sensitivity
or true positive rare), defined as follow:

Precision: NumberGoodFound / NumberFound
Recall: NumberGoodFound / NumberGood.

We also evaluated the predictive power of the Markov blanket by training a reference
classifier (linear ridge regression) and testing on unmanipulated test data.

Results and conclusions:

Ten participants entered the challenge. All the details of the analysis and fact sheets for
some of the entries are available on-line at: http://www.causality.inf.ethz.ch/data/
LOCANET .html.

The methods included: Structure learning using independence tests (Brown & Tsamardinos
and Zhou, Wang, Yin & Geng), combinations of score-based and structure learning methods
(de-Prado-Cumplido & Antonio Artes-Rodrigues and Tillman & Ramsey), combinations of
feature selection and structure methods (Olsen, Meyer & Bontempi), and ensemble methods
(Mwebaze & Quinn).

The edit distance scores of the participants were fairly poor. On REGED and MARTI,
the best ranking entries were empty graphs. On CINA, the best ranking entry had results
worse than the fully connected graph (with symmetric connections). On SIDO, the best
result was barely better than that of the empty graph. From the point of view of the
precision and recall metrics, structure learning methods gave the most promising results

2. We call Markov blanket the set of parents, children, and spouses of the target variable.



(highest precision), but all methods gave a poor recall, particularly for SIDO. We performed
additional qualitative analyses in CINA using the semantics of the identifiers of the true
variables to see whether the uncovered relationships made sense. It is unclear whether using
the tools of causal discovery brought us a lot more information that simple correlation would
have:
- most features cited as cause or effect of the target rank among the most correlated features,
- there is usually no consensus on the causal direction among the participants,
- when there is a large consensus on the causal direction, the result is sometimes suspicious
given the semantics of the feature,
- a simple ranking in order of correlation yields nested feature subsets always more predictive
than the Markov blanket.

Overall these results point to the need to improve the reliability of causal discovery from
observational data.
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