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Key facts

This dataset contains artificial data about product sales and promotions as time series.
There are 1000 binary promotions variables and 100 continuous product sales variables.
The goal is to predict a 1000× 100 boolean influence matrix, indicating for each (i, j) entry
whether the ith promotion has a causal influence of the sales of the jth product.

Abstract

The PROMO dataset proposes the task to identify which promotions affect sales. Artificial
data about 1000 promotion variables and 100 product sales is provided. The goal is to
predict a 1000 × 100 boolean influence matrix, indicating for each (i, j) element whether
the ith promotion has a causal influence of the sales of the jth product. Data is provided
as time series, with a daily value for each variable for three years (i.e., 1095 days).

Each of the 100 products has a defined seasonal baseline, repeating over the years.
The seasonal effect can vary from almost inexistent to major. On top of this baseline are
promotions. Each product is influenced by between 1 and 50 promotions out of the 1000
promotions available. Promotions usually increase the sales with respect to the baseline,
but can occasionally reduce them (e.g., when a similar competing product is promoted, that
promotion might have a negative effect on the sales of the current product). On top of that
are daily variations.

Each of the 1000 promotions can be seasonal or not; i.e., they can have the same pattern
from one year to another or be completely different. The average time a promotion stays
active or inactive, however, is constant for each promotion.

The weighted normalized influence matrix is provided for result evaluation. It is normal-
ized so that the maximum positive contribution is 1 and the maximum negative contribution
is −1, and each nonzero (i, j) entry is weighted by how much promotion i affects product j.

Note that, as this matrix is provided, the participants are trusted to use it for evaluation
purposes only, and not to tune potential hyperparameter of their approaches.
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Data Generation

The data is generated in three steps:

http://www.causality.inf.ethz.ch/repository.php?id=2
jep@zurich.ibm.com
http://www.zurich.ibm.com/~jep/causality/promo.html


Pellet

ON OFF

1/tON

1/tOFF

1/tOFF1 – 1/tON
1 –

Figure 1: The Markov chain generating the promotion variables

1. Generate the 1000 promotion variables;

2. Generate the product baselines (without the promotion effect);

3. Generate the end product sales, including the promotion effect.

We denote promotion variables by Pi, 1 ≤ i ≤ 1000, and the baselines and product sales
by Bj and Sj , respectively, 1 ≤ j ≤ 100. The value generated for variable Pi on day t is
denoted by pit.

The promotion variables are all generated according to a Markov chain whose parameters
are randomly chosen. The Markov chain has two states, on and off. The two transition
probabilities are determined by the inverse of the average number of days in each state ton

and toff, which are drawn from a probability distribution covering from 1 day to 300 days
This fully determines the Markov chain:

pon→off = 1/ton poff→on = 1/toff

pon→on = 1− 1/ton poff→off = 1− 1/toff.

Then, for each promotion variable, with probability 0.5, it is set to repeat each year in the
same pattern as the previous year, and with probability 0.5, not to repeat automatically.
In the former case, a full year (i.e., 365 values, one for each day) is sampled by determining
the state of the variable according to the Markov chain, and then replicated twice, to obtain
the time series over 1095 days. In the latter case, the full 1095 days are sampled with the
Markov chain, resulting with high probability in different sequences for each year. In each
case, the initial state is determined to be on with probability pon = ton/(ton + toff), and
accordingly off with probability poff = 1− pon. This is show in Figure 1.

∀i : pit = time series sampled with Markov chain

Product baselines are the sum of a constant factor cj and of a seasonal effect. The
seasonal effect repeats over the years. The baselines indicate what the sales would be,
without promotions and without random noise. The constant factor is drawn randomly,
and the seasonal effect is determined as a superposition of n sines whose amplitude αk,
phase φk, and pulse ωk are drawn randomly. The number of sines n is drawn uniformly
between 2 and 10. The seasonal effect is then shifted so that its minimum is 0. This is
indicated with the shift(·) function, which we define as shift(xt) = xt −mint′ xt′ .
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∀j : bjt = cj + shift

(
n∑

k=1

αk sin(ωk · t/365− φk)

)

The end sales are generated as follows: for each product, a set Ij of influencing promotion
variables is drawn at random, with its cardinality m uniformly distributed between 1 and 50.
The influence fjl of each influencing promotion Ijl, 1 ≤ l ≤ m, is drawn randomly between
0.2 and 0.8, and negated with probability 0.1. For each day, the total promotion factor
τjt is determined as the square root of the sum of the factors of all influencing promotions
whose state is on. Random Gaussian noise with mean 0 and standard deviation 0.1 is then
added to this promotion factor. The end sales are then the product baseline multiplied
by the total noisy promotion factor (not that this means that the promotion effect is thus
multiplicative rather than additive).

∀j : Ij = random set of m promotion variables
∀j, m : fjl = factor of influence for the lth promotion in Ij

∀j : τjt =

√√√√ m∑
l=1

fjl · 1pindj(l),t=1

∀j : ujt = t realizations of a variable U ∼ N (0, 1)
∀j : sjt = bjt · (τjt + ujt)

The value of 1pindj(l),t=1 is 1 whenever the lth promotion for product j is on on day t, and
0 otherwise (the notation indj(l) just converts the product-specific promotion index l for
product j to the global, product-independent promotion index).

The final data available to challenge participants are the end sales sit and the promotion
variables pit; all other intermediary values remain hidden.

Discussion

There are several ambiguities in the data. For instance, all promotions that repeat year-to-
year can be seen as seasonality. Further assumptions are needed here to tell if some observed
recurring effect is due to seasonality or to a seasonal promotions. Another problem is that
some promotion with a nonzero effect might be on or off all the time, preventing learning
algorithms from assessing its effect.

These points are deliberate and correspond to real-life scenarios. Often, products both
have a seasonality, and often, the promotions applied to these products in the past also had
a certain seasonality. It is therefore important to include an appropriate criterion for to tell
these two effects apart. It is also necessary to have an algorithm that can correctly identify
promotions whose effect cannot be assessed.

Note that the promotion effect is straighforwardly applied to the end sales: only the
current day is used. A given promotion can only have an impact the day it is on; the sale
history has no memory of past promotions. This information was not given to the challenge
participants.
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Approaches Used by Participants

Two approaches were proposed to solve the PROMO task. They are briefly summarized
here; more details can be found on their respective fact sheets at http://www.clopinet.
com/isabelle/Projects/NIPS2008/home.html.

The first approach, A1, first tries to extract the baseline by modeling it as an offset-
plus-sine for each product, to which is then added the promotion effect:

∀j : bjt = cj + αj sin(ωjt + φj)
∀j : sjt = bjt + But,

where B is the influence matrix and ut represents the state of the promotions. This is
solved in two steps: first, the parameters cj , αj , ωj , φj are estimated by fitting the data
with the offset-plus-sine model; then, fixing those parameters to the obtained value, B is
estimated solving j independent convex problems, subject to a sparsity contraint on B: for
each promotion, the number of nonzero entries in B should not be greater than 50 (The
number 50 is given in the problem description as upper bound on the number of relevant
promotion variables). See Markovsky (2008) for more details as well as the whole source
code to reproduce the results listed below.

The second approach, A2, also consists of two steps, where first the seasonal component
is removed, and then the relevant promotion variables are determined. The baseline is
modeled as a constant plus a superposition of 16 sines and cosines with different frequencies.
Denote a design matrix Z = [z1, z2, · · · , z1095]T , where

zt =
(
1 sin(2πt/365) cos(2πt/365) · · · sin(10πt/365) cos(10πt/365)

)T
,

then the baseline is estimated as B̂ = (bjt) = Z(ZT Z)−1ZT S, where S = (sjt) is the matrix
containing the end sales. The input to the second step of the method is the residuals of this
regression, namely Y = S − B. The second step selects the relevant promotion variables
for each product: this is done with an iterative stepwise selection. The hyperparameters of
this selection is then chosen according to an EBIC criterion. See Yin et al. (2008) for more
details about this method.

Results

To compare the results of the participants, we used the following metrics: for each of the
100 products, we determine the precision, recall, and F-score of the participants’ solution.

The precision is a real value between 0 and 1 determining, out of the set of promotion
variables proposed by a participant as influencing product j, what proportion of them are
actually promotion variables that were in Ij ; i.e., which were also used in the generating
model to determine the end sales. The precision for product j is then:

prj =
number of correctly identified promotion variables

total number of identified variables
.

The recall is a also a real value between 0 and 1 determining how complete the partici-
pants’ solution were. It is defined similarly as:

rej =
number of correctly identified promotion variables

total number of promotion variables used in the generating model
.
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A1 (Markovsky, 2008) A2 (Yin et al., 2008)
Precision 0.38± 0.24 0.89± 0.14
Recall 0.32± 0.23 0.78± 0.17
F-score 0.31± 0.19 0.82± 0.13

Table 1: Mean and standard deviation of the precision, recall, and F-score for the two
participants

A perfect solution has precision = recall = 1. A solution with precision = 1, recall =
0.5, for instance, means that all identified promotion variables were indeed correct, but that
they only constituted 50% of those actually used in the generating model. Conversely, a
solution with precision = 0.5 and recall = 1 is such that although all relevant variables were
identified, 50% of all identified variables were not used by the generating model.

Finally, the F-score is the harmonic mean of precision and recall:

Fj =
2 · prj · rej

prj + rej
.

For the two participants, using approaches A1 and A2, the precision, recall, and F-score
was evaluated for each product. Table 1 shows the mean and standard deviation of those
measures aggregated over all products.

Clearly, A2 performs much better, getting twice as good both precision and recall. This
can be due to a number of reasons: probably, extracting a baseline as a superposition of
several sines and cosines rather than a single sine can better recover the original baseline as
generated by the model, as the model used a superposition of sines with different amplitudes,
phases, and pulses. The residuals obtained after baseline extraction by A1 still contain a
bigger part of the seasonal components than the residuals obtained by A2. Taking in more
promotion variables to try and compensate for a baseline detection that could be better
then lowers the precision, while at the same time, not detecting the baseline correctly will
tend to lower the recall, as it becomes less likely to be able to make out well the effect of
the truly influencing promotion variables.
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