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Abstract

When we explore the causal relationship among time series variables, we first remove the
potential seasonal term then we deal with the problem in the feature selection framework.
For a time series with seasonal term, we use several sequences of sin(t) and cos(t) functions
with different frequencies to design a ’pseudo’ design matrix, and the seasonal term is
removed by getting the regression residual of the original series on this ’pseudo’ design
matrix. An iterative stepwise subset selection and threshold method are then applied.
The cut-value for the threshold is selected by an EBIC criterion. Some simulations are
performed to assess our method. In the PROMO task of the Potluck challenge, we apply
our method and obtain a specificity of above 77% while keep the sensitivity of around 89%
on the PROMO task.
Keywords: functional data, iterative threshold, linear model, seasonal term, stepwise
subset selection, structural equation model, time series.

1. Introduction

In the Potluck challenge, we try to select the causal processes from the 1000 promotions
for each product sales series separately. For a time series Y (t) with seasonal terms, we can
decompose it into three parts:

Y (t) = S(t) + T (t) + N(t) (1)

where S(t) denotes the seasonal term, T (t) denotes the trend term which may be influenced
by the other processes and N(t) is the noise part. There exist many methods to model
the seasonal term S(t) in the literature(see Brockwell and Davis (1991), Box et al. (1994)).
Here we treat S(t) as a continuous periodic function and approximate it by a series of
periodic functions bases in the sin and cos functions. We use a linear structure equation
model(SEM) to model the other processes’ causal influence on the target process. That is,

T (t) = β0 + β1 ∗ x1(t) + · · ·+ βp ∗ xp(t) (2)



where xi(t), i = 1, · · · , p stands for the other processes which may also be influenced
by the seasonal factor. So we also apply the same model of seasonal term on each xi(t)
process. Equation (2) is then treated as a simple linear regression model and a stepwise
selection(Weisberg (1985)) procedure is applied to screening out the influential independent
variables. This stepwise selection is applied iteratively to eliminate the possible ”boundary”
variables(see the next section). To get a sparse model, we further use a kind of threshold
on the regression coefficients to select the significant subset. This procedure is also applied
iteratively to get a converged subset. And the hyper-parameter of the cut-point is selected
by an extended BIC criterion. Some simulation study shows that our method can get the
consistent result under different kinds of S(t) and N(t) process. This paper is organized as
following. In Section 2, the preprocessing for the seasonal term is described, in Section 3
the stepwise selection procedure is mentioned and the iterative threshold method with its
hyper-parameter selection method is introduced. Section 4 is the numerical study. Finally
the Section 5 gives some discussion on our method.

2. Preprocessing: Filtering the seasonal term

For a given time series, we use a series of continuous periodic functions to filter out the
seasonal term. Suppose that the period length is T while in our problem, T = 365. Then
we generate the periodical sequences sin(2πt/k), cos(2πt/k), for t = 1, · · · , 1095 and k = T ,
T/2, T/3, T/4, T/5. It is obvious that the period for each sequence is k. Denote a design
matrix Z = [z1, z2, · · · , z1095]>, where

zt =
(
1 sin(2πt/T ) cos(2πt/T ) · · · sin(10πt/T ) cos(10πt/T )

)>

S =
(
S(1), · · · , S(1095)

)> is estimated as Ŝ = Z(Z>Z)−1Z>Y . Then we remove the
seasonal term expressed in the regression value on this design matrix to get the residual as
the input of our next analysis. Y ∗ = Y − Ŝ, x∗i = xi −Z(Z>Z)−1Z>xi for i = 1, · · · , 1000.
Here Y is the realization of 1095 days of certain product sales in our problem and xi is
the realization of 1095 days for some promotion method. To simplify the notation, we still
use the Y for Y ∗ and xi for x∗i respectively. The k is selected up to T/5 is determined by
experience. We assume that the continuous periodic seasonal function can be approximated
well enough by its Fourier expansion up to the fifth order.

3. Feature Selection

Since we have reduce our time series problem into a simple linear feature selection problem
after removing the seasonal term, we can omit the subindex t and write our model

y = Xpβp + ε (3)

where p is the dimension of the original feature space.

3.1 Iterative stepwise subset selection

We use the stepwise selection(SW) to select the influential xi(t)s for each Y (t) through
relation (1) and (2). When the significant level for entering(penter) is different from the one
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for removing(premove), there exists certain situation that some features on the ”boundary”
(here we mean that the significant level is between the penter and premove) can be dropped
in the next round of stepwise selection on the remained feature set. For example, if x2 is
only significant for the response when x1 is in the model; suppose x1 enters first, then x2

can enter, but later x1 is removed and x2 is not removed (if it is on the ”boundary”). For
the next round of SW selection, x2 will be removed. So for the purpose of sparsity, we use
the stepwisefit procedure in Matlab iteratively to select the feature set with penter = 0.05
and premove = 0.1.

3.2 Iterative threshold selection

Before the following analysis, each column of Xp is standardized to have zero mean and
unit variance. Suppose that the true model has a dimension d and denoted as Xd, then the
above relation (3) can be represented as

y = Xdβ
∗
d + ε (4)

where β∗d = {βj : βj 6= 0, 1 ≤ j ≤ p} with a dimension d < p. Initialize M(0) as the output
of the iterative SW selection. M(i) is obtained in an iteratively manner:

M(i) =
{

1 ≤ j ≤‖ M(i−1) ‖: |β̂(i−1)
j | ≥ α ∗ max

1≤k≤‖M(i−1)‖
(|β̂(i−1)

k |)
}

(5)

where β̂(i−1) is the least square estimate for regression coefficient vector of y on XM(i−1)

and ‖ · ‖ denotes the cardinality of a set. Intuitively, we drop those features whose absolute
values of regression coefficients are smaller than α ∗ 100% of the current largest one (in
absolute value).

Denote the true feature set as MT = {1 ≤ j ≤ p : βj 6= 0}. And use the note
|β|min = min1≤j≤p |βj |. In order to justify our selection procedure, we need the following
two assumptions on the underlying model.

• Assumption1 There exists a constant number c0 > 0, such that |β∗|min

/|β∗|max ≥ c0

• Assumption2 For any sub-model of the true model Ms ⊂MT , |βs|min

/|βs|max ≥ c0,
where c0 is the same constant in assumption 1.

Remark. Assumption 1 says that the ratio of the two extremes of the true coefficients is
significantly apart from 0. Assumption 2 want to regulate the behavior of the load on every
feature subset. It’s not the possible weakest requirement.

Under the above assumptions, we have the following results.

Theorem 1 Suppose assumptions 1 and 2 are true, under our model setup (3)-(5), then
with probability tending to one (as n −→∞) that there exists a constant α such that
(I) If M(i) )MT , then ‖ M(i+1) ‖<‖ M(i) ‖.
(II) If M(i) ⊆MT , then ‖ M(i+1) ‖=‖ M(i) ‖.
Proof The α can be chosen as a positive number that 0 < α < c0, where c0 = |β∗|min

/|β∗|max.
For case (I), since the estimate β̂(i) is an unbiased consistent estimator for βp, then with
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probability tending to one |β̂(i)|max ≈ |β∗|max and |β̂(i)|min ≈ 0. Then |β̂(i)|min

/|β̂(i)|max <
α, so at least we can drop one variable. Similarly, for case (II), with assumption 2, we can
see that the same α is also appropriate here for |β̂(i)|min

/|β̂(i)|max > α.

From the above theorem, one can see that from an over-fit model including the true features,
threshold on the regression coefficients can remove the unrelated features and the iteration
can repeat this process until it converges to the true model or its subset. And it will not
continue to delete variables as long as it is covered by the true subset. But what is the case
when we begin from a subset that M(i) +MT ? There is no assertion can be made here,
but from the experience we have, the iteration converges in finite steps under this case.

3.3 Extended-BIC criterion for model selection

Ordinary BIC is likely inconsistent when p >
√

n (Chen and Chen (2008)). We used the
extended-BIC(EBIC) criterion (Chen and Chen (2008)) to select the hyper-parameter α.
From the simulation study in the next section, we can see that the EBIC outperforms the
ordinary BIC and prediction MSE criterion in measure of SN. The extended-BIC is defined
as:

EBIC(M) = log(σ̂2
(M)) + n−1 ‖ M ‖ ×(log n + 2 log p)

Then we search the minimum value for this EBIC(Mα) index by α in an interval. Denote
M̂ = argminα∈[a,b]EBIC(Mα). In practice, we choose [a, b] = [0.1, 0.3].

4. Numerical Studies

In the simulation study, a linear additive model of (1) is considered. We consider three
types of S(t), extra lag-effect in the relationship between T (t) and xi(t)s rather than (2),
and an ARMA noise with an acceptable signal-to-noise ratio for N(t).The simulation result
shows that our approaches have a good robust performance although we never take into
account the lagged effect in T (t) and ARMA in N(t). We use the specificity(shorted as SP)
and sensitivity(shorted as SN) to evaluate. To write them out explicitly,

SP =
#

{
j : β̂j 6= 0 & βj 6= 0

}

#
{

j : βj 6= 0
} SN =

#
{

j : β̂j 6= 0 & βj 6= 0
}

#
{

j : β̂j 6= 0
} .

4.1 Simulation method

We simulate the similar model configurations compared to our PROMO task under model
(1). For the S(t), we select three types of periodic continuous function to represent it.

Type(1) S(t;n,m, φ1, φ2, T ) =
∑n

i=1 sin
(
2πit

/
T + φ1

)
+

∑m
j=0 cos

(
2πjt

/
T + φ2

)
.

Type(2) S(t; a1, a2, a3, T ) = t(T − t)
[
(t− a1)(t− a2)(t− a3)− 200

]
.

Type(3) Twice moving average of a random N(0, σ2) series with smoothing window width
h which is sampled from [50, 80] uniformly.
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We generate a total of 50 S(t)s for each seasonal type on the domain t ∈ [0, 365] and
then extend them to span in [0, 1095] periodically. The parameters in the three types are
randomly assigned except T which is set to 365.

For T (t), firstly we generate 1000 binary series xi(t) for t = 1, · · · , 1095, i = 1, · · · , 1000
which are potential causes of each Y (t) series through the relation (1) and (2). We generate
500 seasonal xi(t)s(with period 365) and 500 non-seasonal xi(t)s. For each point in xi(t), a
binary number is generated from a binomial distribution B(p) where p is sampled uniformly
on [0.2, 0.8]. The seasonal one is the triplication of the function defined in [0, 365]. Then
the coefficients β in (2) are defined as following: the number of non-zero βj is uniform
sampled from [1, 50] while the non-zero values are sampled uniformly from interval [0.4, 1]
and assigned a negative sign with probability 0.2. Besides, we suppose covariates xi(t)s
may have lagged effect on the target T (t), which often exists in the real world. Inspired by
the power decay lagged effect model in (Box et al. (1975)), we use the backward operator
ω ∗ ∑

lag(
1
2B)(lag−1) on xi(t)s, where ω represents the lagged effect coefficients randomly

taking a smaller absolute value than the corresponding major effect but a possible opposite
sign. The lag length lag is randomly selected in {0, 1, 2, 3, 4, 5}. We add the lagged effect
to the T (t).

We model the noise term N(t) as an ARMA model whose parameter (p, d) is randomly
assigned. Finally,we get the simulated target series Y (t) from the summation of the above
three series multiplied with appropriate scale parameters, such that the signal-to-noise rate
is around 4 . Then we apply an iterative SW procedure followed by an iterative threshold
procedure proposed above to select the significant subset. Different kinds of criterion for α
are compared in their accuracy measures.

4.2 Simulation results

Table 1 tells us that the model selected by EBIC is comparably good in SP while is over-
whelmingly better than BIC and MSE criterion in SN.

Seasonal Function criterion SP SN
BIC 0.98 0.76

Type (1) EBIC 0.96 0.99
MSE 0.99 0.59
BIC 0.96 0.57

Type (2) EBIC 0.92 0.94
MSE 0.97 0.46
BIC 0.96 0.57

Type (3) EBIC 0.93 0.93
MSE 0.96 0.47

Table 1: Comparison of three criterions.

From Table 2 we can see that the iterative SW process is necessary for there are more
than 30% of the case that there are ’boundary’ variables in our selected model. Table 3 also
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Seasonal Function 1 2 3 > 4
Type (1) 0.7 0.3 0 0
Type (2) 0.58 0.38 0.04 0
Type (3) 0.62 0.36 0.02 0

Table 2: Iteration number distribution for iterative SW process.

Seasonal Function criterion 1 2 3 4 5 6 7 > 8
BIC 0 0.14 0.28 0.22 0.06 0.14 0.04 0.12

Type (1) EBIC 0 0.24 0.38 0.24 0.12 0 0 0.02
MSE 0.38 0.26 0.14 0.08 0.04 0.06 0.02 0.02
BIC 0 0.06 0.26 0.28 0.12 0.08 0.02 0.18

Type (2) EBIC 0 0 0.44 0.34 0.16 0.04 0.02 0
MSE 0.44 0.08 0.24 0.12 0.04 0.02 0.02 0.04
BIC 0 0.04 0.24 0.26 0.16 0.18 0.06 0.06

Type (3) EBIC 0 0.04 0.28 0.38 0.1 0.14 0.02 0.04
MSE 0.42 0.12 0.12 0.16 0.02 0.1 0.04 0.02

Table 3: Iteration number distribution for the iterative Threshold process.

supports that the iteration for Threshold process is necessary although they finally converge
with large probability.

4.3 Results on the PROMO task

We apply our algorithm to the PROMO task and get a specificity of above 77% and sensi-
tivity around 89%.

5. Discussion

One may doubt that whether only the iterative threshold process can do the variable se-
lection job well enough. When feature space is of high dimension, from our experience,
only the iterative threshold without stepwise selection can lead to terrible results. The
stepwisefit procedure in Matlab is very efficient in computation, and the computation for
one time of iterative threshold can be negligible.
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