Scalable Structure Discovery in Regression using Gaussian Processes

Hyunjik Kim
hkim@stats.ox.ac.uk

Yee Whye Teh
y.w.teh@stats.ox.ac.uk

Department of Statistics, University of Oxford, 24-29 St Giles, Oxford OX1 3LB

Abstract

Automatic Bayesian Covariance Discovery (ABCD) in Lloyd et al. (2014) provides a framework for automating statistical modelling as well as exploratory data analysis for regression problems. However ABCD does not scale due to its \(O(N^3)\) running time for the kernel search. This is undesirable not only because the average size of data sets is growing fast, but also because there is potentially more information in bigger data, implying a greater need for more expressive models that can discover finer structure. We propose Scalable Kernel Composition (SKC), a scalable kernel search algorithm, to encompass big data within the boundaries of automated statistical modelling.

1. Introduction

Automated statistical modelling is an area of research in its early stages, yet it is becoming an increasingly important problem. As an increasing number of disciplines use statistical analyses and models to help achieve their goals, the demand for statisticians, machine learning researchers and data scientists is at an all time high. Automated systems for statistical modelling aim to serve as an assistant to help increase the efficiency of these human resources, if not as a best alternative where there is a shortage.

Duvenaud et al. (2013) take the first step of tackling the problem of structure discovery in nonparametric regression by fitting a Gaussian Process (GP) to the data, with an algorithm for automatically choosing a suitable parametric form of the kernel. This leads to high predictive performance that matches those with kernels hand-selected by GP experts (Rasmussen, 2006). There also exist other approaches that tackle this model selection problem by using a more flexible kernel (Wilson and Adams, 2013; Samo and Roberts, 2015). However the distinctive feature of Duvenaud et al. (2013) is that the resulting GPs are interpretable; the kernels are constructed in such a way that we can use them to describe patterns in the data, and thus can be used for automated exploratory data analysis. Lloyd et al. (2014) extend this to generate natural language analyses from these kernels, a procedure which they name Automatic Bayesian Covariance Discovery (ABCD). The Automatic Statistician\(^1\) implements this to output a 10-15 page report when given data input.

However a limitation of ABCD is that it does not scale; due to the \(O(N^3)\) time for inference in GPs, the analysis is constrained to small data sets, specialising on one dimensional time series data. This is a grave drawback in this era when data is getting bigger and more

\(^1\) See http://www.automaticstatistician.com/index/ for example analyses

© H. Kim & Y.W. Teh.
high dimensional. Moreover it is clear that the importance of model selection increases with the size of the data set; we would like to select a more expressive model that adequately captures the information in the bigger data. This paper proposes a scalable extension to ABCD, to encompass big data within the boundaries of automated statistical modelling.

2. Automatic Bayesian Covariance Discovery (ABCD)

The Compositional Kernel Search (CKS) algorithm in Duvenaud et al. (2013) builds on the idea that the sum and product of two positive definite kernels are also positive definite. Starting off with a set B of base kernels defined on $\mathbb{R} \times \mathbb{R}$, the algorithm searches through the space of zero-mean GPs with kernels that can be expressed in terms of sums and products of these base kernels. The base set $B = \{\text{SE}, \text{LIN}, \text{PER}\}$ is used, which correspond to the squared exponential, linear and periodic kernel respectively.\(^2\) So candidate kernels form an open-ended space of GP models, allowing for an expressive model. A greedy search is employed to explore this space, with each kernel scored by the Bayesian Information Criterion (BIC) (Schwarz et al., 1978) after optimising the kernel hyperparameters by type II maximum likelihood (ML-II). See Appendix A for the algorithm in detail.

The resulting kernel can be simplified to be expressed as a sum of product of base kernels, which has the remarkable benefit of interpretation. In particular, note $f_1 \sim GP(0, k_1), f_2 \sim GP(0, k_2) \Rightarrow f_1 + f_2 \sim GP(0, k_1 + k_2)$. So a sum of products of kernels can be interpreted as sums of functions each with structure given by the product of kernels. Now each base kernel in a product modifies the model in a consistent way. For example, multiplication by SE converts global structure into local structure since $\text{SE}(x, x')$ decreases exponentially with $|x - x'|$, and multiplication by LIN is equivalent to multiplication of the modeled function by a linear function since $f(x) \sim GP(0, k) \Rightarrow xf(x) \sim GP(0, k \times \text{LIN})$.\(^3\) Lloyd et al. (2014) uses this observation for ABCD, giving a natural language description of the resulting function modeled by the composite kernel. In summary ABCD consists of two algorithms: the compositional kernel search CKS, and the natural language translation of the kernel into a piece of exploratory data analysis.

3. Scaling up ABCD

ABCD in Section 2 provides a framework for a natural extension to big data settings, in that we only need to be able to scale up the compositional kernel search algorithm, then the natural language description of models can be directly applied.

The difficulty of the extension of the compositional kernel search to big data settings lies in the $O(N^3)$ time for evaluation of the GP marginal likelihood and its gradients with respect to the kernel hyperparameters. It is tempting to use as a proxy for the exact likelihood either an approximate marginal likelihood or the exact marginal likelihood of an approximate model. However we will need practically meaningful guarantees that relate these approximate quantities to the exact marginal likelihood of the full GP model, in order for the chosen kernel to faithfully reflect the actual structure in the data. These guarantees on known approximate GP marginal likelihoods are often difficult to achieve. Instead we

\(^2\) The exact form of these base kernels are given in Appendix B

\(^3\) See Lloyd et al. (2014) for detailed interpretations for different base kernels
provide a lower and upper bound to sandwich the exact marginal likelihood, and we use this interval for model selection. To do so we give a brief overview of the relevant work on low rank kernel approximations used for scaling up GPs, and we later outline how they can be applied to obtain cheap lower and upper bounds.

3.1. Random Fourier Features

Random Fourier Features (RFF) (a.k.a. Random Kitchen Sinks) was introduced by Rahimi and Recht (2007), which uses Bochner’s theorem (Rudin, 1964) to give an unbiased low-rank approximation to the Gram matrix $K = \mathbb{E}[\Phi^\top \Phi]$ with $\Phi \in \mathbb{R}^{m \times N}$ (see Appendix C for details). A bigger m lowers the variance of the estimate. Using this approximation, one can compute determinants and inverses in $O(Nm^2)$ time. In the context of kernel composition in Section 2, RFFs have the nice property that samples from the spectral density of the sum or product of kernels can easily be obtained as sums or mixtures of samples of the individual kernels (see Appendices C and D). We use this later to give a memory-efficient upper bound on the exact marginal likelihood.

3.2. Nyström Methods and Sparse Gaussian Processes

The Nyström Method (Williams and Seeger, 2001; Drineas and Mahoney, 2005) selects a set of m inducing points in the input space \mathbb{R}^D that attempt to explain all the covariance in the Gram matrix of the kernel: the kernel is evaluated for each pair of inducing points and also between the inducing points and the data, giving matrices $K_{mm}, K_{mn} = K_{nm}^\top$. This is used to create the Nyström approximation $\hat{K} = K_{mn}(K_{mm})^{-1}K_{mn}$ of K. Applying the Cholesky decomposition to K_{mm}, we see that the approximation admits the form $\Phi^\top \Phi$ and so allow efficient computations as for RFF. We later use the Nyström approximation to give another upper bound on the exact marginal likelihood.

The Nyström approximation arises naturally in the sparse GP literature, where certain distributions are approximated by simpler ones involving f_m, the GP evaluated at the m inducing points: the DTC approximation of Seeger et al. (2003) defines a model that gives the marginal likelihood $q(y) = \mathcal{N}(y|0, \hat{K} + \sigma^2 I)$, whereas the FIC approximation of Snelson and Ghahramani (2005) gives $q(y) = \mathcal{N}(y|0, \hat{K} + \text{diag}(\hat{K} - \hat{K}) + \sigma^2 I)$, correcting the Nyström approximation along the diagonals. Quinonero-Candela and Rasmussen (2005) further improves this by introducing the PIC approximation, where the Nyström approximation is corrected on block diagonals with blocks typically of size $m \times m$. Note however for FIC and PIC that the approximation is no longer low rank, but matrix inversion can still be computed efficiently by Woodbury’s Lemma (see Appendix F).

The variational inducing points method (VAR) introduced by Titsias (2009) is rather different to DTC/FIC/PIC in that it gives the following variational lower bound on the exact log marginal likelihood (see paper for derivation):

$$\log[\mathcal{N}(y|0, \hat{K} + \sigma^2 I)] - \frac{1}{2\sigma^2} \text{Tr}(K - \hat{K})$$

(1)

This lower bound is optimised with respect to the inducing points and the kernel hyperparameters, which is shown in the paper to successfully yield tight lower bounds in $O(Nm^2)$ time for reasonable values of m. Another useful property of VAR is that the lower bound
can only increase as the set of inducing points grows (Titsias, 2009; Matthews et al., 2016). Bauer et al. (2016) also points out that VAR always improves with extra computation, and that it successfully recovers the true posterior GP in most cases, contrary to other sparse GP methods. Hence this is what we use in the scalable structure discovery to obtain a lower bound on the marginal likelihood and optimise the hyperparameters. Also note that contrary to DTC/FIC/PIC, Equation (1) cannot be seen as the log marginal likelihood with a plug-in estimate for the Gram matrix.

3.3. A Cheap Upper Bound on the Marginal Likelihood

Fixing the hyperparameters to be those tuned by VAR, we seek a cheap upper bound to the exact marginal likelihood. Upper bounds and lower bounds are qualitatively different, and in general it is more difficult to obtain an upper bound than a lower bound for the following reason: first note that the marginal likelihood is the integral of the likelihood with respect to the prior density of parameters. Hence to obtain a lower bound it suffices to exhibit regions in the parameter space giving high likelihood. On the other hand, to obtain an upper bound one must demonstrate the absence or lack of likelihood mass outside a certain region. There has been some work on the subject (Beal, 2003; Ji et al., 2010), but to the best of our knowledge there has not been any work on cheap upper bounds to the marginal likelihood affordable in large N settings. So finding an upper bound from the perspective of the marginal likelihood can be difficult. Instead, we exploit the fact that the GP marginal likelihood has an analytic form, and treat it as a function of K.

The GP marginal likelihood is composed of two terms and a constant:

$$
\log p(y) = -\frac{1}{2} \log \det(K + \sigma^2 I) - \frac{1}{2} y^\top (K + \sigma^2 I)^{-1} y - \frac{N}{2} \log(2\pi)
$$

We give separate upper bounds on the negative log determinant (NLD) term and the negative inner product (NIP) term. For NLD, we give two candidate upper bounds. Firstly, Bardenet and Titsias (2015) prove that

$$
-\frac{1}{2} \log \det(K + \sigma^2 I) \leq -\frac{1}{2} \log \det(\hat{K} + \sigma^2 I)
$$

a consequence of $K - \hat{K}$ being positive semi-definite. Hence the Nyström approximation plugged into the NLD term serves as an upper bound. Note this can be computed in $O(Nm^2)$ time by Sylvester’s Determinant Theorem (Appendix F).

Alternatively, note that the function $f(X) = -\log \det(X)$ is convex on the set of positive definite matrices (Boyd and Vandenbergh, 2004). Hence by Jensen’s inequality we have, for $\Phi^\top \Phi$ an unbiased estimate of K:

$$
-\frac{1}{2} \log \det(K + \sigma^2 I) = f(K + \sigma^2 I) = f(E[\Phi^\top \Phi + \sigma^2 I]) \leq E[f(\Phi^\top \Phi + \sigma^2 I)]
$$

Hence $-\frac{1}{2} \log \det(\Phi^\top \Phi + \sigma^2 I)$ is a stochastic upper bound to NLD that can be calculated in $O(Nm^2)$. An example of such an unbiased estimator Φ is given by RFF. We compare these two upper bounds to NLD in Section 4.

As for NIP, we point out that $\lambda y^\top (K + \sigma^2 I)^{-1} y$ is the optimal value of the objective function in kernel ridge regression $\min_{f \in \mathcal{H}} \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2$, where \mathcal{H} is the
Algorithm 1: Scalable Kernel Composition algorithm

Input: data $x_1, \ldots, x_n \in \mathbb{R}^D$, $y_1, \ldots, y_n \in \mathbb{R}$, base kernel set B, depth d, maximum number of inducing points m, kernel buffer size S

Output: k, the resulting kernel

For each base kernel on each dimension, obtain lower and upper bounds to BIC (BIC interval), set k to be the kernel with highest upper bound, and add k to kernel buffer K.

$C \leftarrow \emptyset$

for depth=1:d do
 From C, add to K all kernels whose intervals overlap with k if there are fewer than S of them, else add the kernels with top S upper bounds.

 for $k' \in K$ do
 Add following kernels to C and obtain their BIC intervals:
 (1) All kernels of form $k' + B$ where B is any base kernel on any dimension
 (2) All kernels of form $k' \times B$ where B is any base kernel on any dimension
 end
 if exists kernel $k^* \in C$ with higher lower bound than k then
 $k \leftarrow k^*$
 end
end

Reproducing Kernel Hilbert space associated with k. The dual problem, whose objective function has the same optimal value, is $\max_{\alpha \in \mathbb{R}^N} -\lambda [\alpha^\top (K + \sigma^2 I) \alpha - 2 \alpha^\top y]$. Noting that $\max_{\alpha} - g(\alpha) = -\min_{\alpha} g(\alpha)$, replacing λ with σ^2 and multiplying by a suitable constant we have:

$$-\frac{1}{2} y^\top (K + \sigma^2 I)^{-1} y = \min_{\alpha \in \mathbb{R}^N} \frac{1}{2} \alpha^\top (K + \sigma^2 I) \alpha - \alpha^\top y$$

(5)

Hence $\frac{1}{2} \alpha^\top (K + \sigma^2 I) \alpha - \alpha^\top y$ is an upper bound for NIP $\forall \alpha \in \mathbb{R}^N$. Note that this is also in the form of an objective for conjugate gradients (CG) (Shewchuk, 1994), so the optimal value is at $\hat{\alpha} = (K + \sigma^2 I)^{-1} y$. We can approach the optimum for a tighter bound by using CG or preconditioned CG (PCG) for $O(m)$ iterations to get a reasonable approximation to $\hat{\alpha}$. Each iteration of CG and the computation of the upper bound takes $O(N^2)$ time, but PCG is very fast for large data sets and FIC/PIC give fastest convergence in general (Cutajar et al., 2016). Also note that we only need to compute the upper bound once, whereas one must evaluate the lower bound and its gradients multiple times for the hyperparameter optimisation. We later confirm in Section 4 that the upper bound is fast to compute relative to the lower bound optimisation. We also provide results to show the effectiveness of this upper bound for various kernel approximations.

3.4. SKC: Scalable Kernel Composition using the Lower and Upper Bound

Given a kernel and a value of m, we can compute the lower and upper bounds as above to obtain an interval for the exact GP marginal likelihood and hence the BIC of the kernel with its hyperparameters optimised by VAR. These hyperparameters may of course not be the global maximisers of the exact GP marginal likelihood, but as in ABCD we may
optimise the marginal likelihood with multiple sets of random starting values to find the local optimum closest to the global optimum.

Note that we can guarantee that the lower bound increases with larger m, but cannot guarantee that the upper bound decreases. In fact, the upper bound is likely to increase as well, since with larger m it is likely that one can find hyperparameters that give a higher exact marginal likelihood, hence a higher upper bound. We verify this in later experiments. Hence for kernel evaluation, it would be sensible to use the largest possible value of m that one can afford, so that the exact marginal likelihood with hyperparameters optimised by VAR is as close as possible to the exact marginal likelihood with optimal hyperparameters.

With these intervals for each kernel, we can perform a semi-greedy kernel search whereby we expand the kernel tree on the top S intervals of the current depth. A summary of the Scalable Kernel Composition algorithm is given in Algorithm 1. Further details on the optimisation and initialisation are given in Appendix G.

4. Experiments

We present results for experiments showing the bounds we obtain for two small time series and a multidimensional regression data set, for which ABCD is feasible. The first is the annual solar irradiance data from 1610 to 2011, with 402 observations (Lean et al., 1995) where we use the kernel $(\text{SE}+\text{SE})\times\text{PER}$. The second is the time series Mauna Loa CO2 data with 689 observations with kernel $\text{SE}\times\text{LIN} + \text{SE}\times\text{PER}$. The multidimensional data set is the concrete compressive strength data set with 1030 observations and 8 covariates with kernel $\text{LIN}4+\text{SE}1 \times \text{SE}7+\text{SE}1 \times \text{SE}2 \times \text{SE}4 + \text{SE}2 \times \text{SE}4 \times \text{SE}8 + \text{SE}2 \times \text{SE}4 \times \text{SE}7 \times \text{SE}8 \times \text{LIN}4$. All these kernels have been found by CKS. All observations and covariates have been normalised to have mean 0 and variance 1.

Figure 1: (a) Left: negative energy (lgo marginal likelihood + log prior) for fullGP with optimised hyperparameters, optimised VAR lower bound for each of the 10 random initialisations per m, and the exact negative energy for the best hyperparameters out of the 10. Middle: exact NLD and upper bounds. Right: exact NIP and upper bounds after m iterations of CG/PCG. (b) Same as Figure 1(a), except learning inducing points for the VAR lower bound optimisation and using them for subsequent computations.

From the left of Figures 1(a), 4(a) and 5(a) (the latter two can be found in Appendix K) we see that VAR gives a lower bound for the optimal marginal likelihood that improves with

4. Data can be found at ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt
5. Data can be found at https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
increasing m. From the variance of the different random initialisations, we see that having around 10 initialisations seems sufficient. The best lower bound is tight relative to the exact marginal likelihoods at the hyperparameters optimised by VAR. From the middle plots, we observe that the Nyström approximation gives a very tight upper bound on the NLD term, and does indeed increase with m. RFF gives upper bounds that are not as tight, especially for larger values of m. From the right plots, we can see that PCG with any of the three preconditioners (Nyström, FIC, PIC) give very tight upper bounds to the NIP term, whereas CG may require more iterations to get tight, for example in Figures 4(a) and 4(b) (latter two can be found in Appendix K).

Comparing Figures 1(a), 4(a) and 5(a) against Figures 1(b), 4(b) and 5(b), learning inducing points does not lead to a vast improvement in the VAR lower bound. In fact the differences are not very significant, and sometimes learning inducing points can get the lower bound stuck in a bad local minimum, as indicated by the high variance of lower bounds in the latter three figures. Moreover the differences in computational time is significant as we can see in Table 1 of Appendix I. Hence the computation-accuracy trade-off is best when fixing the inducing points.

Fixing the inducing points, we also compare times for the different computations in Table 1. The gains from using the variational lower bound instead of the full GP is clear, especially for the larger data sets, and we also confirm that it is indeed the optimisation of the LB that is the bottleneck in terms of computational cost. We also see that the NIP upper bound computation times are similarly fast for all m, thus convergence of PCG with the PIC preconditioner is happening in only a few iterations.

We also compare the kernels chosen by CKS and by SKC for the three data sets. The results are summarised in Figure 2. For solar, we see that the SKC successfully finds SE \times
PER, which is the second highest kernel for CKS, with BIC very close to the top kernel. For mauna, SKC selects \((SE + \text{PER}) \times SE + \text{LIN}\), which is third highest for CKS and a BIC very close to the top kernel. For concrete, a more challenging eight dimensional data set, we see that the kernels selected by SKC do not match those selected by CKS, but it still manages to find similar additive structure such as \(SE1+SE8\) and \(SE4\). Also PER7 found by CKS is dubious, since it is unlikely that concrete compressive strength is a periodic function of fine aggregate density, the seventh covariate. Of course, the BIC intervals for kernels found by SKC are for hyperparameters found by VAR with \(m = 80\), hence do not necessarily contain the optimal BIC of kernels CKS. However the above results show that our method is still capable of selecting appropriate kernels even for low values of \(m\), without having to home in to the optimal BIC using high values of \(m\).

5. Conclusion and Future Work

We have introduced SKC, a scalable kernel discovery algorithm that extends CKS and hence ABCD to bigger data sets. We have confirmed that SKC works well for small data sets where ABCD is feasible. Next, we should test whether SKC finds suitable kernels for medium sized data sets where ABCD is infeasible, but a single GP optimisation is just about feasible; we may compare the BIC obtained by SKC and that obtained by optimising for example the ARD kernel or spectral mixture kernel (Wilson and Adams, 2013). Then we should go on to test SKC on large time series data with tens of thousands of data points and known structure at different scales, for example global/local periodicities and linear trends; we should investigate whether it can successfully find such structure. We should also look into using grid integration for evaluation of kernels, which would give a more accurate estimate of the model evidence than BIC. Note Laplace approximation adds on an expensive Hessian term, for which it is unclear how one can obtain lower and upper bounds.

References

Walter Rudin. Fourier analysis on groups. AMS, 1964.

Arno Solin and Simo Särkkä. Explicit link between periodic covariance functions and state space models. 2014.
